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CHAPTER 1. INTRODUCTION 

Problem Statement 

Many fluid flows occurring in engineering applications and nature are very com­

plex. Some flows are also complicated by the addition of heat transfer. Despite the 

complexity, it is important that engineers gain an understanding of these flows. 

A vast array of products presently designed by engineers involve or include the 

flow of fluids or heat transfer, or both. Airplanes, automobiles, bicycles, engines, heat 

exchangers, refrigerators, and turbines are a few such products. In order to improve 

existing designs of any of these, or to develop new ones, it is necessary to gain a 

better understanding of the fluid mechanics and heat transfer associated with these 

applications. 

Fluid flow is described mathematically by the laws of conservation of momentum, 

mass, and energy. These laws have been understood for some time. However, the 

complicated nature of the equations and boundary conditions limits analytical solu­

tions to simplified sets of these equations over simple geometries. With the advent of 

the electronic digital computer, solutions of the full set of equations over complicated 

geometries have become possible. 

The solution of the governing equations on a digital computer is accomplished by 

approximating them with sets of discrete equations. These equations are then solved 
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on a sufficient number of points within the domain of interest to adequately resolve 

the details of the flow. Several factors should be considered when choosing the exact 

form of these discrete equations and the procedure used to solve them. Among them 

are accuracy, robustness, and computational efficiency. Simplifying assumptions are 

judged for their validity in the flow regime considered. One of the more important 

aspects of the overall scheme is the application of boundary conditions. These should 

be kept as simple and accurate as possible. 

Often the equations which are discretized are a set of nonlinear partial differential 

equations. The equations which govern the flow of a Newtonian fluid are called, 

collectively, the Navier-Stokes equations (Anderson et al. 1984). The character of 

these equations varies with the particular flow regime considered. They are a mixed 

set of hyperbolic-parabolic equations for unsteady, compressible flow, and parabolic-

elliptic for unsteady, incompressible flow. For steady flow they are hyperbolic at 

supersonic speeds, parabolic at the sonic point, and elliptic at subsonic speeds. 

Various methods have been proposed to numerically solve the Navier-Stokes 

equations. Although most have strong points, it is not clear which of the algorithms 

is superior. There remains sufficient motivation for the development and refinement 

of advanced methods of solution — including new methods deviating radically from 

the usual ones such as finite-difference, finite element, and spectral methods. 

The present work deals with a procedure employing iterative, spatial sweeps. 

Solvers of this type are called space-marching methods. Such methods have proven 

to be efficient and accurate for steady flows. The intent of this study has been 

to extend the range of applicability of this procedure to unsteady flows with heat 

transfer. Since this extension involves marching in both space and time, confusion 
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due to terminology can occur. An effort has been made to avoid the use of the word 

'marching' without modifiers. For the space marching procedure, the term, 'space' is 

used to clarify the meaning. The modifiers, 'time' or 'temporal' are used to denote 

the procedure of advancing the temporal solution. 

Below is a brief overview of work which has been performed by other researchers 

on various space-marching algorithms. Following that are a few comments on the 

present procedure. Since the bulk of the calculations for this project were for flow 

over a right-circular cylinder, a review of work done in that arena is provided. Lastly, 

a brief discussion of the motivation for this project is given. 

Review of Previous Work on Space-Marching Methods 

The first space-marching schemes utilized the boundary-layer equations. These 

equations are strictly parabolic, and thus are solved using one pass. Some limitations 

of this procedure are the lack of streamwise diffusion, transverse pressure gradients, 

and the inability to calculate streamwise pressure gradients in external flows. 

To overcome some of the shortcomings of the boundary-layer equations, the 

parabolized Navier-Stokes (PNS) equations are sometimes applied (see e.g., Patankar 

and Spalding 1972). This method is a once-through procedure for solution of prob­

lems that may include transverse pressure gradients and secondary flows. The parab-

olization of the Navier-Stokes equations is accomplished by dropping the streamwise 

diffusion terms, evaluating streamwise convective terms using only upstream infor­

mation, and, for subsonic flows, the streamwise pressure gradient is imposed as a 

fixed source term. 

The next level of complexity for subsonic flows are simplified forms of the gov­



www.manaraa.com

4 

erning equations which include some elliptic information. These are referred to as 

'reduced' by Rubin and Reddy (1983) and partially-parabolized Navier-Stokes equa­

tions (PPNS) (Anderson et al. 1984). Multiple passes are required to resolve the 

elliptic effect. In these equations, some of the diffusion terms are neglected. More 

details of the dropped terms are given below. 

A few researchers have included the full set of Navier-Stokes equations, using 

multiple passes to compute both the streamwise pressure gradient and the streamwise 

diffusion terms. 

Simplified forms of the Navier-Stokes equations 

The reduced Navier-Stokes and partially parabolized Navier-Stokes (PPNS) equa­

tions include those forms which neglect some streamwise influence. For this reason, 

both forms represent simplified or reduced versions of the equations. However, the 

term 'reduced' has been used in the literature (see e.g., Rubin and Reddy 1983) and 

will be used here to represent the set of equations in which the streamwise diffu­

sion is dropped from the x-momentum equation, and all diffusion is eliminated from 

the y- and z-momentum equations. The PPNS equations, on the other hand, are 

characterized by only the lack of streamwise diffusion in all momentum equations. 

The streamwise pressure gradient is computed in both of these. Multiple passes are 

required to resolve this term. These are, by far, the most common elliptic equations 

which have been space marched. 

Segregated methods Methods which solve the governing equations indepen­

dently of one another were some of the first schemes utilized. Prat rap and Spalding 
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(1976) followed this procedure to solve the momentum equations and estimate the 

pressure at each marching station during the global sweep. Moore and Moore (1979) 

and Chilukuri and Fletcher (1980) utilized a global Poisson equation to evaluate the 

entire pressure field between the regular space-marching sweeps. 

These methods represent a significant improvement from the truly parabolic, 

single-pass space-marching methods. However, the lack of coupling between the 

velocity and pressure solutions reduces the convergence rate for fiows with substantial 

pressure gradients. 

Coupled methods A study of space-marching with a reduced form of the 

steady, incompressible Navier-Stokes equations was tarried out by Rubin and Reddy 

(1983). In their formulation, the streamwise diffusion was dropped in the (-momentum 

equation, and all diffusion was eliminated from the 7/-momentum equation. A spe­

cial pressure equation was solved with boundary conditions at the top and outfiow 

boundaries only. They discuss in some depth the questions of stability and con­

sistency. Several differencing schemes are compared and judged on their respective 

virtues. Brown (1983) used a method similar to the above to study flow separation. 

In the works mentioned above, both Rubin and Reddy (1983) and Brown (1983) 

solved the coupled continuity and momentum equations simultaneously to resolve the 

velocity and pressure fields. They used a staggered grid to prevent the decoupling of 

the velocity and pressure. 

Liu and Fletcher (1986) used a coupled, space-marching procedure to solve the 

compressible Navier-Stokes equations on a regular grid. 

Ramakrishnan and Rubin (1986) extended the space-marching algorithm of Ru­
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bin and Reddy (1983) to unsteady flows. The results they show are for the reduced 

Navier-Stokes equations, although they state that the method should be extendable 

to the full equations. Their comments on stability seem to be limited to the reduced 

set of equations. An important point for the present study is that they found that 

fine grids for large Reynolds number flows do not produce a steady solution. 

Himansu and Rubin (1987) employed a multigrid method to accelerate conver­

gence in their space-marching scheme. 

Full Navier-Stokes equations 

A successful attempt to increase convergence rates in steady cases was made by 

Bentson and Vradis (1987). They solved both the partially parabolized and the full 

Navier-Stokes equations in incompressible form using a space marching scheme on 

a staggered grid. A pressure-Poisson equation was solved using an iterative, reverse 

s w e e p .  T h i s  u p d a t e  o c c u r r e d  a f t e r  e a c h  g l o b a l  s w e e p .  T h e y  f o u n d  t h a t  5 - 1 0  

iterations of the Poisson-solver were required. As a further aid to convergence, they 

integrated the streamwise momentum equation along the grid lines which lie parallel 

to the stream lines. They did this from down-stream to up-stream. This step was 

only performed approximately every 5 global sweeps. These additional computations 

were found to improve the rate of convergence for all flows, but especially for internal 

flows. 

Most of the space-marching schemes discussed above, for both reduced and full 

Navier-Stokes, employed a staggered grid. A deliberate departure from that tradition 

was made by TenPas and Pletcher (1987). They used a regular grid to solve the 

full Navier-Stokes equations (although the option of using the PPNS equations was 
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coded). 

The scheme was strictly for steady flows, and the compressible form of the equa­

tions was used. Incompressible flows were resolvable since density had been elim­

inated using the ideal gas law. The equations (x-momentum, y-momentum and 

continuity) were solved in primitive variable form. The block system that was solved 

was for Two-dimensional cases were reported. A three-dimensional version 

was later produced and tested (TenPas 1990). 

The results shown in both of these reports were largely for internal flow. The 

flow over a symmetric cylinder, using an H-grid was the lone external flow case. 

The internal-flow results tended to be accurate on moderately-course grids, and the 

convergence rate was found to be quite attractive. The external-flow case was found 

to be more difficult. Multigriding was required to start the solution, and resolution 

about the stagnation points was found to be rather poor. 

Upwind relaxation methods Another set of algorithms should be mentioned 

because a form of them appear as essentially space-marching. These methods have 

been given the name upwind relaxation methods. A form of flux-splitting is used in 

these methods, resulting in a block-pentadiagonal matrix. In all of the references in­

cluded below, the equations were solved in conservation law form, using conservation 

law variables. One group (Napolitano and Walters 1986) also solved the incompress­

ible form using vorticity-stream function equations. 

Thomas and Walters (1985) used this procedure to calculate steady flows using 

an unsteady formulation. They used the flux-splitting method developed by Van 

Leer (1982) for their upwind differencing. Line Gauss-Seidel relaxation is applied to 
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the block system, with the option of using either for% lines. Of course only when 

the ( lines were used exclusively, and the procedure was carried out from upstream 

to downstream did it become a space-marching method such as the others described 

above. Couette flow, compressible flow over a flat plate, and shock-boundary-layer 

interaction were studied. 

Further studies were made by Napolitano and Walters (1986). Incompressible 

weakly separated channel flow and incompressible driven cavity solutions were pre­

sented. Compressible flows included shock-boundary-layer interaction and turbulent 

flow in the terminal shock region of an inlet/diffuser. For this first compressible 

case, comparison was made between marching in the streamwise direction only and 

alternating down- and up-stream sweeps. Convergence was slightly better for the 

streamwise-only marching case. 

Taylor et al. (1989) extended the above algorithm to include sub-iterations at 

each time level. They restricted their work to steady flows as well. Vertical line Gauss-

Seidel iteration was used exclusively, but for subsonic flows they swept the spatial 

domain both backward and forward. They experienced a problem with diagonal 

dominance in the subsonic flat plate flow. Under-relaxation was required to restore 

stability. 

Present Space Marching Method 

Improved methods of solution are always welcome. Better accuracy, efficiency 

and stability are continually pursued. The work found in this report builds on that 

of Ten Pas (1990). The extensions of that work are toward better resolution of the 

front stagnation point on a cylinder, heat transfer results, and unsteady flows. To 
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this end, the code by TenPas (1990) was modified to run on a C-grid, with which 

resolution in the upstream stagnation region was improved, and the full energy equa­

tion was added. A time loop, which contains the original space-marching iterations, 

was added. The sub-iterations at each time level were performed using the original 

space-marching method. It is believed that this is the first time a C-grid has been 

used with a space-marching procedure. 

The full two-dimensional Navier-Stokes equations were solved on a 'regular' (not 

staggered) grid with the present procedure. The unsteady version of this scheme is 

similar to Ramakrishnan and Rubin (1986) except that they solved the reduced form 

of the equations on a staggered grid. 

Two types of grids were used. For the fiat plate, a Cartesian H-grid was used. 

The C-grid was used for the fiow over a right circular cylinder. Heat transfer was 

calculated for various fiows. 

The algorithm used in this study differs from the upwind relaxation methods 

described above in several ways. In the present scheme, the solution at each marching 

station was obtained by Gauss-elimination rather than an iterative scheme. The 

stream wise pressure gradient was always forward differenced — although for higher 

Mach numbers it is believed this would have to be modified — finally, no provision 

for marching in any direction other than streamwise was included. 

Flow Over a Right Circular Cylinder 

The study of flow (with and without heat transfer) over blunt bodies has been 

pursued, both experimentally and numerically, for some years. The results of such 

studies can be used to improve the design of aircraft, missiles, torpedoes, and turbine 
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blading, as well as many other products. When the physical region of interest is near 

the front stagnation point, cylinders and spheres can be used as representative blunt 

bodies. This is due to the fact that, in this region, the details of the flow are nearly 

the same regardless of the overall geometry, as long as the body is blunt. This can 

greatly simplify the geometry and allow comparison of results with the data of many 

other researchers. 

In the present study, crossflow over a cylinder was used as a model of the flow 

over a two-dimensional blunt body. The physical phenomena of the flow over a 

cylinder can be very complicated. Separation — sometimes several counter-rotating 

vortices — is common. Unsteadiness is inherent to the flow above a certain Reynolds 

number. Turbulent flow in some or all of the separated regions occurs at higher 

Reynolds numbers. Following is a more detailed description of these regimes. 

For a Reynolds number less than about seven, the laminar boundary layer re­

mains everywhere attached to the cylinder. For higher Reynolds numbers, the flow 

separates at some point on the cylinder and reattaches downstream of the rear stag­

nation point. This creates a region of recirculating flow behind the cylinder. The 

length of this recirculation zone varies approximately linearly with Reynolds number 

as long as the flow is steady. The upper limit of steady flow is at a Reynolds number 

of about 40. Above that point, the separation bubble begins to oscillate with a def­

inite frequency. Vortices begin to shed alternately from either side of the cylinder. 

This is the well-known von Kârmân vortex street. At the lower end of the Reynolds 

number scale, the flow remains entirely laminar. Turbulence begins to appear at 

higher Reynolds numbers. 

Achenbach (1968) proposed three Reynolds number ranges for characterizing the 
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various flow regimes. In the subcritical range {Re < 2x10^), the boundary layer is 

laminar up to the separation point. In the critical range (2x10® < Re < 1.5x10^) the 

boundary layer remains laminar up to separation, but becomes turbulent soon after 

separating. This turbulent bubble reattaches as a turbulent boundary layer which 

then separates again downstream. At yet higher Reynolds numbers (the supercritical 

range), the transition point occurs upstream of the separation point. 

The frequency of the vortex shedding is described using the dimensionless pa­

rameter, Strouhal number 

Uf 

where n is the dimensional frequency. The Strouhal number ranges from 0.2 (subcrit­

ical) to 0.25 (supercritical). Because of the self-excited nature of this phenomenon, 

anything that inhibits the interaction of the separation bubbles can change the char­

acteristics of the wake flow. To eliminate the unsteadiness, some researchers have 

inserted a splitter plate on the plane of symmetry, downstream of the cylinder. 

Review of experimental studies 

A substantial amount of experimental work aimed at cylinders in crossflow with 

heat transfer has been performed over the years. Krall and Eckert (1973) stud­

ied various low Reynolds number flows. They concentrated on a uniform heat flux 

boundary condition. Zukauskas and Ziugzda (1985) have shown that, for the local 

Nusselt number in the vicinity of the stagnation point, whether constant heat flux or 

uniform temperature boundary conditions are used is unimportant since the results 

coincide. 

Earlier, Eckert and Soehngen (1952) had studied the case of a reasonably uniform 



www.manaraa.com

temperature boundary condition. They heated the cylinder before beginning their 

measurements and allowed it to cool naturally. They believed that this cooling had 

negligible effect on their results. In both of these studies, Eckert and his coworkers 

intended, not necessarily to prove or point out something in particular, but rather 

to add to the data base of results which are scarce — local Nusselt numbers for low 

Reynolds number flows. 

Acrivos et al. (1965) presented low Reynolds number flow heat transfer results 

also for the case of constant heat flux. Despite the fact that the maximum Reynolds 

number that they ran was about 225, they claimed that the intent of the work was 

to study flows in the limit of vanishing viscosity. In order to model the conditions 

for which the laminar thermal boundary layer theory is valid, they used an oil tunnel 

for which the Prandtl number was in excess of 1000. They point out that the heat 

transfer results were particularly sensitive to the blockage factor. Unfortunately, they 

believed that their results were affected by the level of blockage in their test apparatus. 

The results shown by them may be off by ten to twenty percent. From a qualitative 

standpoint, however, they show that, for high Reynolds numbers, the Nusselt number 

in the reversed flow region is independent of variation in Reynolds number. In the 
TV It  J 

region of attached flow, it should vary such that ^ is proportional to -Re^. They 

also compare the results of cylinders with splitter plates to those without. 

These researchers also developed a theoretical model of the flow in the separated 

region of bluff bodies at high Reynolds numbers. It consisted of separate equations 

for the inner (close to the body) and outer (far from the body) regions. For the region 

nearest the body they proposed the following set 
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_dv _dv Idp 2-

dû dv „ 

where the variables with the overbars are defined as: 

û = uRe, V = vRe, p = pRe, 

For the bulk of the bubble, or far field (except near the body) 

du ^du 1 dp d^u 

and 

I-
where 

ry du 
- Jo 'É''"' ' = fe 

Unfortunately, they were unable to develop a theory which linked the two regions. 

A follow-up study was performed by Acrivos et al. (1968). In this new study 

they extended their experiments to other body shapes. These included a half-cylinder, 

wedges, and a flat plate at angles of attack. They believe that the new results verified 

their theoretical model from the previous work. 

A study which included an electrochemical technique to measure velocity gradi­

ents on the wall was performed by Dimopoulos and Hanratty (1968). They report 

results for cylinders with and without a splitter plate. Flows with Reynolds numbers 

between 60 and 360 were studied. They show that the technique is valid, that the 

apparatus does not require calibration, and is easy to fabricate. 

A study of the flow over an impulsively started cylinder was conducted by Bouard 

and Coutanceau (1980). They studied a range of Reynolds numbers from 40 to 10,000. 
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The results shown were extensive, including unsteady recirculation bubble lengths, 

velocity profiles on the line of symmetry behind the cylinder, and the value and 

location of the maximum negative velocity on that line. Their data are very useful 

for comparison to numerical results. 

Zukauskas and Ziugzda (1985) have compiled a book on the subject of flow and 

heat transfer over cylinders in crossflow. For further study, reference should be made 

to this extensive work. 

There is a tendency for this work to branch off to more complex flows. Heat 

transfer with varying levels of free stream turbulence is one example. However, more 

results of fundamental nature are still needed. The data base is particularly lacking 

in local Nusselt number information for flows of low Reynolds number. 

Review of numerical studies 

Numerical solutions of the Navier-Stokes equations for flow past a cylinder have 

a rather long history, beginning well before the invention of computers. The earliest 

formulation was presented by Thom (1933) in which he solved arithmetically the 

viscous flow equations in two dimensions using the method of of successive approxi­

mations. He studied flows at Reynolds numbers of 10 and 20. 

Solution of the governing equations using the computer is a relatively recent 

advancement. Because of limited computer resources in early years, a simplified 

set of equations known as the boundary-layer equations were popular. The flows 

resolvable using these equations are limited due to the assumptions used to derive 

them. Geometries with large flow curvature (and, therefore, substantial transverse 

pressure gradient) and flows with large separation regions are not usually well suited 
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to solution with the boundary-layer equations. 

With more powerful computers came the ability to solve more complete sets 

of the governing equations. This allowed more complicated flows to be calculated. 

Thus, when the solution of the full equations became possible, realistic calculations 

of the flow over a cylinder also became a reality. 

Steady flow A study of the flow over a cylinder, using the stream-function 

vorticity-transport equations was carried out by Son and Hanratty (1969). They 

intended to extend the range of reliable, steady data to higher Reynolds numbers. 

Results for Reynolds numbers of 40, 200, and 500 were presented. They used a time-

marching method and reported some transient data'. Some of their steady data are 

compared to the experimental results of Dimopoulos and Hanratty (1968). Their 

findings were similar to those reported by others, in that the steady flow solution was 

not the same as the time-averaged solution of the actual unsteady flow. 

Dennis and Chang (1970) applied a stream-function vorticity-transport algo­

rithm to the steady, incompressible flow over a circular cylinder. They too hoped 

to extend the Reynolds number range for reliable data. They limited the Reynolds 

number to the range 5 < Re < 100. Their findings confirm earlier results which show 

a linear relationship between the separation bubble length and Reynolds number. 

An exceptionally complete paper was published by Fornberg (1980). He included 

not only his own numerical results, but also a survey of those of a large number of 

other researchers. The upper Reynolds number limit was 300. All of his results were 

for steady, symmetric flow. 

Noticing a shortage of data for turbulent flow over cylinders, Majumdar and 
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Rodi (1985) determined to contribute to that area. They used a variation of the 

TEACH (Gosman and Pun 1974) type of algorithm, with a k-e turbulence model. 

Results for Reynolds numbers of 40, 10^, 1.4x10^, and 3.6x10® were shown. For the 

higher Reynolds numbers, the flow would be unsteady. A steady solver was used on 

a symmetric grid. Because of this, the results in the separated region tended to be 

off somewhat. 

For incompressible flows, Kwak et al. (1984) used a pseudo-compressibility method 

to solve for steady flows. It was an implicit, approximately factored scheme which 

did not require a Poisson equation for the pressure. However, higher order smoothing 

terms were required for stability. They solved for the flow over a cylinder using a 

full 0-grid at a Reynolds number of 40 as one test case. Since this work did not 

concentrate on the flow over a cylinder, the results shown were not extensive. 

A comparison between an explicit upwind method and the alternating direction 

implicit (ADI) scheme (both for the stream-function vorticity-transport equations) 

was done by Borthwick (1986). Results for a range of Reynolds numbers between 40 

and 400 were reported. He found that such a large amount of artificial viscosity was 

produced by the explicit scheme as to prohibit vortex shedding at all Reynolds num­

bers. A special case was attempted to explore this problem by letting Re = 40,000. 

Even in this extreme case, no vortices were shed. The ADI method, however proved 

to be quite reliable in resolving the vortex sheet. 

Chun and Boehm (1989) used a stream-function vorticity approach to calculate 

flow over a right-circular cylinder with heat transfer. Central differences were used 

when the cell Reynolds number was less than two, and a variation of the hybrid 

representation (which they refer to as the power-law scheme) for greater cell Reynolds 
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numbers. They resolved only half of the flow domain, using a symmetric boundary. 

They say that their treatment of this symmetric boundary could closely approximate 

time-averaged behavior in the wake region. This has been disproved by Karniadakis 

and Triantafyllou (1989) who time-averaged the flow field over a cycle and found that, 

for a Reynolds number of 100, the average separation bubble length was substantially 

smaller than indicated by the corresponding steady calculation. Since heat transfer 

was not considered by Karniadakis and Triantafyllou (1989), it is unclear as to how 

this affects the Nusselt number distribution. 

Paolino et al. (1986) used an explicit finite-control-volume approach to calculate 

the flow with heat transfer about a cylinder. Their results were for high Reynolds 

numbers (3000 and 70,800). When they compared their numerical heat transfer 

results with those from experiments, they appeared to match poorly downstream 

of the separation point. On the front portion of the cylinder, the agreement was 

quite good. Although they state that the local Nusselt number should have relative 

maxima at stagnation points, their results show a drop in Nusselt number close to 

the leading edge stagnation point. This phenomenon has been observed in boundary 

layer solutions and was found in the present work as well. 

Unsteady flow The unsteady nature of flows can be due to several driving 

forces. One would be a time variation in body forces (such as gravitational and elec­

tromagnetic forces). Another is unsteady boundary conditions. The unsteadiness 

may be an initial step change, or continuous changes with time. Still another driving 

force is the inherent unsteadiness such as in vortex shedding behind a body in cross-

flow. The free stream conditions may be steady in this case. In this work, only the 
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case of unsteady boundary conditions (impulsively started cylinder) was successfully 

computed. 

Several researchers have studied the case of a cylinder, started with either 

uniform or potential flow conditions initially. Loc (1980) used a stream-function 

vorticity-transport formulation to resolve this type of flow. A fourth order scheme 

for the stream-function, and a second order method for the vorticity-transport equa­

tion was reportedly used. Reynolds numbers of 300, 550, and 1000 were discussed. 

Loc was able to resolve secondary vortices that other researchers had missed. He 

used the photographs of Coutanceau and Bouard (1980) for comparison. 

Loc and Bouard (1985) performed further studies using the same scheme. They 

concentrated on Reynolds numbers of 3x10^ and 9.5x10^ for this new study. More 

and finer details of the flow were resolved. 

More recently, a study of the same type of flow was done by Chamberlain (1987). 

The major difference between his work and that of the studies reported above, was 

the solution method. The stream-function vorticity-transport equations were again 

solved, but the Poisson equation for the stream function was dealt with using a fast 

direct method based on the fast Fourier transform. The vorticity-transport equation 

was solved using an ADI scheme. 

In a paper expounding the advantages of their fractional-step method, Rosenfeld 

et al, (1988) reported results for flow start-up over a cylinder at a Reynolds number 

of 40. Finite volumes on a staggered grid were used to ensure conservation of mass. 

The momentum equations were solved in flux-variable form for the velocities. The 

resulting velocity field was not, in general, divergence-free. Pressure was computed 

using a Poisson solver and corresponded to a divergence-free velocity field. The 



www.manaraa.com

19 

velocities were then corrected to satisfy the continuity equation. For flow over a 

cylinder, a full 0-grid was used. The outer boundary conditions were rather severe, 

allowing no mass to cross. They believe that, at large times, this boundary condition 

adversely affected their results. 

This survey is not intended to be complete. Many other researchers have pro­

duced excellent results using a variety of methods. The research mentioned in this 

review is meant only to point out a portion of the work that has been done in the 

area of flows about right circular cylinders — both experimental and numerical. 

Motivation for the Present Work 

Turbomachinery design has become a very exacting science. Designers put forth 

efforts to gain a fraction of a percent of efficiency. Therefore, knowledge of the 

intricate details of the fluid flow and heat transfer is becoming increasingly important. 

These details include (but are not necessarily restricted to) transition, turbulence, 

separation, and unsteadiness. Perhaps even more important is the interaction of 

these phenomena. Research is currently being performed to gain knowledge in these 

areas. 

Experiments by Vanfossen and Simoneau (1985) have been conducted to study 

the relationship between free stream turbulence and heat transfer. Specifically, they 

were interested in investigating the mechanism which increases heat transfer in the 

stagnation region of a turbine blade. 

This work was extended by O'Brien et al. (1986). They studied the efl'ect of 

rotor wakes passing over a downstream blade row. The particular area of interest 

was heat transfer in the stagnation region. Both the rotating and stationary blade 
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rows were made up of cylinders. Splitter plates were placed behind the stators to 

eliminate the effect of shedding vortices. 

The present work was intended to contribute to the above body of research. One 

of the long term goals of this project was to develop the numerical procedures needed 

to simulate the effect of free stream unsteadiness on stagnation region heat transfer. 

This problem is very complex, and becomes more so when the Reynolds number is 

large. Before advancing to this application, it is important to carefully verify various 

features of the basic numerical scheme. The majority of this dissertation was devoted 

to the latter task. To this end, heat transfer results for steady flow over a cylinder 

were calculated. This was extended to unsteady flow over an impulsively started 

cylinder. To the author's knowledge, these are the first such heat transfer results 

reported for the latter unsteady flow. 

An attempt was also made to advance to flows with vortex shedding. This 

requires that the flow field be evaluated over the entire cylinder (a symmetric bound­

ary condition is not allowed). Although the reasons remain under investigation, the 

present method has not been able to resolve this phenomenon. 
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CHAPTER 2. GOVERNING EQUATIONS 

In this chapter, a mathematical model for unsteady, laminar, subsonic flow is 

presented. First, the nondimensionalization is described, then the flow geometry is 

set forth. Next, the set of fundamental conservation laws that describe the motion 

of a homogeneous fluid are stated. The constitutive relations, equation of state 

and transport property formulas that close the model are given. Reductions of the 

general mathematical model that are valid for specific flow regimes are discussed, and 

the optional simplifications in the model to reduce the computational requirements 

are described. The transformation of the governing equations to the computational 

domain is presented in the final section of the chapter. 

The variables in the equations presented here will be dimensionless. The use 

of dimensionless variables removes the restrictions of a particular system of units 

and reduces computer round-off error by normalizing the variables. Dimensions are 

canceled from the dimensional equations by multiplying or dividing the variables 

by dimensional reference constants. The reference quantities and the corresponding 

dimensionless variables are defined in the following manner (dimensional quantities 

are indicated by a tilde, free stream properties are subscripted r, surface quantities 

with surf ,  and reference values are denoted by the subscript  R): 
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&) ' = 7%  ̂ ' = 2% « = 4 

« = i Z F  ^  °  ̂ ' r - C r /  

^ = & '' = /& ^-'2 = $ 

/? = ^ - = 4  ^  = 1  
îi'p ^ 
% 

HJI = nrRe kji  = Cp 

Here, L^ is a flow field characteristic length, x and y are the Cartesian coordinates, 

u and V  are the respective Cartesian velocity components,  p is  the static pressure,  S 

is the thermal variable used in the energy equation; T is the static temperature, p is 

the density, is the dynamic viscosity, k is the thermal conductivity, Ci and €'2 are 

the Sutherland constants, R is the gas constant, 7 is the specific heat ratio, and cp is 

the constant pressure specific heat. The reference properties, and kf^ were chosen 

so that the dimensionless equations appeared identical to the dimensional ones. The 

Reynolds number, Mach number, and Prandtl number are defined as 

lU = M = PT='Jp^ 
f i j* c-p kj* 
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Flow Geometry and Coordinate Systems 

The space-marching method is best suited to problems having a principal flow 

direction. Arbitrary geometry is accommodated by the use of a curvilinear, body-

fitted coordinate system created by employing an independent variable transforma­

tion. Figure 2.1 depicts a flow domain in physical coordinates, and Figure 2.2 shows 

the computational domain. The flow domain is bounded by an inlet flow plane up­

stream, an exit flow plane downstream, a free stream boundary on the top, and 

symmetry on the bottom (except for the body surface). 

The body-fitted coordinates are best oriented in an manner that most closely 

follows the primary flow direction. The space-marching direction direction) is 

roughly aligned with the flow direction whenever possible. The constant ( lines 

are thus preferably approximately normal to the flow streamlines and are termed 

Figure 2.1: Physical space 
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Figure 2.2; Computational space 

"marching stations". The upstream boundary is the ^ surface for an H-grid 

but is a segment of the t] = rjmax line for a C-grid. The downstream boundary is 

the ^ = ^max surface for either grid type. 

In this work, the term "streamwise" is used to refer to the (-direction (along 

lines of constant 77) and the term "transverse" is used to denote the direction along 

the 77 lines (constant (). It should be kept in mind that these terms do not relate to 

the flow direction in all regions of all flows due to flow reversal and various grids. 

In addition to aligning the space-marching direction with the principal flow di­

rection, the use of body-fitted coordinates has other advantages. The boundaries are 

defined by surfaces upon which one of the coordinates is constant. Thus the bound­

ary conditions are more easily and more accurately applied. Also the spacing of the 

coordinate lines may be varied within the flow domain to concentrate grid points 

in regions where gradients in the flow properties are largest. Meanwhile a uniform 
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computational grid is maintained. This allows the use of algebraically simple and 

accurate finite-difference approximations of derivatives. 

A generalized independent variable transformation is carried out to generate the 

body-fitted coordinates, ^ and 77 as such: 

^ = n = vi '^ ,y)  

The transformation introduces metric terms into the equations that provide the 

geometric information needed. Definitions of the metrics and the Jacobian of the 

transformation are given in Appendix A. 

Conservation Laws 

The equations representing the conservation of momentum, mass, and energy 

— collectively referred to as the Navier-Stokes equations (Anderson et al. 1984) — 

govern the flow of a compressible fluid. These equations are satisfied at every discrete 

point within the flow field. Ultimately, it is the boundary conditions which are 

imposed upon the flow which determine the particular solution for a given problem. 

Solution methods vary in the form of the equations used to express the conser­

vation laws. The form employed for the present study is a system of nonlinear partial 

differential equations with the Cartesian velocity components, pressure, and 5 as the 

primary dependent variables. The solution vector, q, is defined as 

rp 
q=[u,v,p,S] 

The equations chosen to solve for these unknowns were the continuity equation, 

the X- and y-momentum equations, and the energy equation. Each of these equations 

was first transformed using an independent variable transformation before solving. 
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Governing equations in physical coordinates 

For a compressible flow in the absence of body forces, four governing equations 

are needed to solve for the unknowns presented above. Additional equations are 

needed to fix the state and to calculate properties such as viscosity, and thermal 

conductivity. 

The two-dimensional Cartesian coordinate form of the momentum equations, 

the continuity equation, and the energy equation can be expressed in dimensionless 

vector form as: 

dU dE dF „ 
(2.1) 

The derivative with respect to time vanishes for steady flow. The vectors in the 

equation above are 

rp 
U = [pu,pv,p,pet] 

2 pu" + p - Txx 

E = 

puv 

pu 

Txy 

puh'^ + Qa 
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F = 

pvu Txy 

pv^ + P - Tyy 

pv 

pvh'^ + Qy — 

The total specific energy of the fluid is defined here as the sum of the internal 

and kinetic energies 

V? + 
' t  = e + —^ 

and the total enthalpy is the usual sum of the static enthalpy and the kinetic energy 

p 2 

The viscous terms in the energy equation expand to 

~ uTxx + i>' ' 'xy 

= UTxy + VTyy 

Equation of state and property evaluation 

The fluid is assumed to behave as a perfect gas with constant specific heats. 

Thus, the thermodynamic properties of the fluid are related through the following 

equations 

P = 
RT 

(2.2) 
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h = cpT (2.3) 

The specific heats are assumed constant and are determined from the gas con­

stant and the ratio of specific heats, 

' P  =  ( 2 - 4 )  

The equation of state (Equation 2.2) is used to eliminate density in the momen­

tum, continuity, and energy equations. 

Boundary conditions 

The equations of motion for unsteady, compressible flow are hyperbolic-parabolic 

in character. In the incompressible regime, they become parabolic-elliptic. However, 

for steady, subsonic flow the governing equations are strictly elliptic. The method 

used in this study was initially developed to solve the steady form of the equations; the 

time terms were added later. The solution procedure remains largely unchanged in 

the unsteady version. The spatial iterations were simply nested inside a new iteration 

level — the temporal step. The boundary conditions are the same for unsteady flows. 

Initial conditions take the place of the initial guess used in the steady case. 

For subsonic flow, the solution may be affected by conditions at all points on 

the flow boundaries. However, for moderate and high Reynolds number flows the sig­

nificant conditions are not the same for all points — upstream conditions influence 

the flow differently than downstream conditions. In this study it is assumed that 

the problem is well-posed with prescribed conditions on the inlet boundary (given 

5j profiles). Although the upstream pressure can change during a given iter­

ation, the entire pressure field is adjusted after each iteration, by adding a constant 
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to the pressure at each nodal point, to return it to the specified value. The flow 

conditions imposed at the exit boundary are that the pressure profile further down­

stream is uniform (though this value can also vary from iteration to iteration), that 

streamwise diffusion and dissipation are negligible, and, should the flow be reversed 

at the final station, it is assumed that the velocity downstream is zero. 

The conditions for the side boundaries vary depending on the physical aspects of 

that specific boundary. On solid walls the no slip and no penetration conditions on 

velocity are applied. The normal pressure gradient is assumed to be zero. Flow may 

cross free stream boundaries, but the diffusion terms are assumed to be negligible. 

The specific treatment of different boundary conditions is presented in greater detail 

in Chapter 4 in terms of the numerical solution. 

Model Closure 

The transport terms and fluid properties contained in the fundamental conser­

vation laws must be modeled to complete the mathematical formulation. The rela­

tionships given below were selected for the flow regimes of interest in this study. The 

solution algorithm is not believed to be restricted to these particular formulations, 

though use of other models would require careful evaluation and testing. 

Constitutive relations for laminar flow 

For laminar flow of a Newtonian fluid the viscous stresses are modeled by as­

suming they are proportional to the rate of strain of a fluid element. Using Stokes' 

hypothesis for the second coefficient of viscosity leads to the following expressions for 

the viscous stresses in terms of the velocity gradients. 
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2 / du dv 
= ï>' VK '  % 

2 f  dv du\ 
' 'yy = à'' 1% " &,) 

/ 5ti 

And the heat flux, given by Fourier's law of heat conduction, is proportional to 

the gradient of the temperature field. 

n 

(2.6) 

Qz/ = 

Transport property relationships 

In keeping with the perfect gas model above, the transport properties are as­

sumed to vary with temperature while the Prandtl number remains constant. The 

viscosity is evaluated from the Sutherland formula, and the thermal conductivity is 

obtained from the definition of the Prandtl number and the viscosity. 
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Reduction of the Governing Equations 

The simplification of the equations which has been termed "parabolization" 

should be mentioned. For flows at moderate and high Peclet number, the effects 

of stream wise diffusion and dissipation are negligible when compared to the corre­

sponding transverse terms. Computational efficiency is improved by dropping these 

terms from the set of governing equations. The set of equations which results from in­

corporating this approximation are known as the partially parabolized Navier-Stokes 

or PPNS equations (see, for instance Anderson et al. 1984). This option is imple­

mented in the computer code by a switch, set in the input to the program, to bypass 

calculation of these streamwise terms. In this study, the simplified form was only 

used to start the computation (first global sweep) and at outflow boundaries (as a 

form of boundary condition). 

Transformation of the Governing Equations 

To better facilitate a numerical solution for problems with arbitrary geometry, an 

independent variable transformation of the governing equations was performed. The 

change of independent variables to the computational coordinates was accomplished 

by applying the chain rule to each derivative. The chain rule operators are: 

The transformation introduces metric terms into the equations. These metrics pro­

vide the geometric information needed. 



www.manaraa.com

32 

The equations may be expressed in several forms depending on the sequence in 

which the chain rule operations are carried out. For example, the so-called chain-

rule-conservation-law form (Hindman 1982) of Equation 2.1 is 

d u  ^  d E  ^  d F  d E  d F  „  

Alternatively, the equations can be cast in the strong-conservation-law form as 

where 

E' = [ixE + iyF)IJ 

F'  = {rixE + r]yF)IJ 

For reasons discussed in Chapter 4, the momentum equations are solved in the 

chain-rule-conservation-law form, while the strong-conservation-law form (specifically 

the finite volume form) is used for the continuity equation. Another detail of the 

transformation that should be noted, is that the diffusion terms in both the momen­

tum equations and the energy equation contain derivatives of metrics. The transfor­

mation of the diffusion terms is given in Appendix D. 

Equations in computational form 

The the equations for two-dimensional flow. Equation 2.1, are expressed in the 

computational coordinates as 

d U  .  d E  .  d F  ^  d E  ^  d F _  
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where, as before: 

U = [pu,pv,p,petY 

E = 

pu + P ~ "^xx 

puv 

pu 

Txy 

puh° + Qz -  $3 

and 

F = 

pvu - Txy 

pV^ + P -  Tyy 

pv 

pvh^ + Qy — 

— "UTxx + "VTxy 

= UTxy + '^Tyy 

However, the chain rule must be applied to r  and Q 

2 f  (  du du\ (  dv dv^ 
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n  
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CHAPTER 3. SOLUTION ALGORITHM 

The formulation used here is a modification of a scheme originally developed 

for the solution of the steady equations only. When the time derivative terms were 

added, no changes were made to the space-marching procedure. At each time step the 

solution is converged using multiple space-marching sweeps. Therefore, statements 

made about the space-marching formulation apply to either the steady or unsteady 

formulation. 

In this chapter, the solution procedure for the governing equations is explained. 

First, the global iteration strategy is examined. Next, the stability restrictions, 

unique to the steady space-marching formulation, that must be satisfied in order 

to advance the solution are reviewed. The method used for accelerating the conver­

gence of the pressure field is then described. Finally, the procedure for solving the 

unsteady formulation is described. 

Traditionally, space-marching algorithms have been used for solving parabolic 

equations. The complete solution being obtained in a single sweep. However, applied 

to elliptic problems, a single sweep with a space-marching solver can only approxi­

mate the solution. In order for downstream conditions to properly influence the flow 

upstream, multiple passes (iterations) are necessary. The present solution algorithm, 

diagrammed in Figure 3.1, consists of two distinct procedures that are executed for 
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each global iteration: 

1. The variables, = [u,v,p^S]^, are calculated at each station. Starting from 

an initial marching station (in the upstream region of the flow field), the solution 

is space-marched in the downstream direction (approximately). This procedure 

employs an implicit, finite-difference formulation of Equation 2.1. Assumed 

values for the pressure field are required — a guess for the first pass, and the 

most recent (calculated) values on subsequent sweeps. 

2. The difference between the newly computed pressure field and the assumed 

pressure field is assessed as a convergence criterion. A single backsweep with 

a modified Poisson equation solver is executed to improve the estimate of the 

correct pressure field. 

These two procedures are described in greater detail in the sections below. The 

numerical formulation is presented in the next chapter. 

Space-Marching Solution 

The goal researchers had in mind when developing space-marching algorithms 

was to create schemes which would efficiently calculate steady flows with a primary 

flow direction. By marching in the streamwise direction to the extent possible, in­

formation is rapidly passed from upstream to downstream. The following sections 

explain some of the important aspects of the basic scheme. 
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Figure 3.1: Flow chart of algorithm 



www.manaraa.com

38 

Coupled, primitive variable formulation 

The space-marching procedure is executed by numerically integrating Equa­

tion 2.1 by marching in the ^ direction using an implicit, finite-difference method. 

A flowchart of the procedure is shown in Figure 3.1. The solution is initiated from 

given flow conditions at the first marching station — the inlet flow boundary for 

an H-grid, and the line of geometric symmetry running from the body to the inlet 

flow boundary for a C-grid. At each marching station in turn, a set of four coupled, 

nonlinear equations is solved for provisional values of the primary flow variables, q^. 

As explained below, the downstream terms in the equations are treated explicitly, 

using assumed initial values or values obtained from the previous global iteration. 

Due to the presence of these explicit values, the result of the space-marching solution 

is only an approximation to the converged solution, depending upon how closely the 

downstream terms have been approximated. Therefore, repeated sweeps are applied 

to improve this approximation. The magnitude of change in the solution is used to 

determine convergence. 

Stability of the steady space-marching procedure 

For steady, subsonic flow the system of partial differential equations (Equa­

tion 2.1) is elliptic in space. It is thus not well-posed as an initial value problem 

for solution by a single space-marching sweep. However, proper treatment of the 

stream wise derivative terms allows a stable space-marching calculation to be exe­

cuted. Linear stability analysis of the frozen coefficient form of Equation 2.1 identifies 

the stability restrictions on the algorithm. In essence, terms that transmit informa­

tion from downstream to upstream must be treated as source terms, i.e., fixed values 
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are used in place of values determined during the marching sweep. The treatment of 

these direction-dependent terms is described in the following paragraphs. 

For subsonic flow, the downstream pressure controls the flow solution through 

the streamwise pressure gradient terms. The degree to which the streamwise pressure 

gradient must be restricted is a function of the local Mach number as determined by 

the Vigneron condition (Vigneron et al. 1978). For the range of Mach numbers 

considered in this study, the streamwise pressure gradient must be entirely forward 

differenced. At higher Mach numbers, as the local acoustic velocity is approached, it 

is desirable to gradually shift the diff'erencing toward the upstream direction. This 

flow dependent condition reflects the characteristic domain of dependence of the 

pressure. It should be noted that a flux-splitting type of analysis yields the same 

results (Rubin 1988). 

Downstream velocities and temperatures may also influence the solution through 

the streamwise convection, diffusion, and dissipation terms. Where the (-direction 

contravarient velocity is positive, the corresponding convection terms are backward-

differenced. However, where the flow reverses direction, the streamwise convection 

terms in the momentum and energy equations must include properties ahead of the 

current marching station. In practice, the sign of the (-direction contravarient ve­

locity is calculated and the (-derivatives in the convective terms are differenced ap­

propriately. This type-dependency does not apply to the continuity equation. It is 

always formulated with fluxes from the previous marching station. 

The streamwise diffusion and dissipation terms also involve downstream stations. 

At moderate and high Peclet numbers, these terms are small compared to the other 

terms in the respective equations. Therefore, explicit treatment of the downstream 
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properties in these terms is stable and, except at very low Peclet numbers, has little 

effect on the convergence rate of the solution. 

It should be clear that the complete two-dimensional Navier-Stokes equations 

are retained. The restrictions are applied only to maintain the numerical stability of 

the space-marching calculation. The stability restrictions reflect the elliptic nature of 

the governing equations by requiring that the appropriate information directionality 

be included in the solution of the local equations. Since the downstream values are 

unknown, iteration is necessary to converge the initial estimates of these terms, and 

this process allows downstream boundary conditions to influence the flow solution 

upstream. 

Stability of the unsteady procedure 

Rigorous stability (von Neumann) analysis of algorithms which solve the full 

Navier-Stokes equations is extremely complex. Usually one expects that, for an 

implicit solution procedure, no stability restrictions should apply. 

Since the steady procedure used here is believed to be unconditionally stable, 

and since the method is implicit, it is believed that there are no stability restrictions 

(such as those which von Neumann analysis uncovers) on the unsteady algorithm. 

Initialization of the space-marching procedure 

From the stability considerations discussed above it is clear that estimated values 

are needed to begin execution of the space-marching procedure. For the first pass, 

the FLARE approximation (Reyhner and Fliigge-Lotz 1968) is used in regions of 

reversed flow, the streamwise and cross derivatives of the diffusion and dissipation 
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terms are neglected, and a pressure field is assumed. For successive iterations the 

downstream velocities are taken to be the "lagged" values from the previous global 

iteration. Initial flow conditions are required for the unsteady formulation. 

Pressure Correction Procedure 

Several procedures for accelerating the convergence of the pressure field have 

been considered. Among them are: 

1. Simple under-relaxation of the pressure after each global sweep. 

2. Solving a simplified pressure-Poisson equation using a parabolized, marchable 

solver. 

In most cases, most notably the ones employing the C-grid topology in the 

present work, the solution diverged if neither of these procedures was applied. All of 

the results shown in this report were obtained using the simplified pressure-Poisson 

equation. It was found that this additional step was stabilizing, even for unsteady 

problems. 

Motivation for the pressure correction procedure 

The pressure field is given special treatment in the algorithm. The reason for 

the pressure correction procedure is to move information in the direction which is 

physically correct. In the general case, the flow at any point may be influenced by 

the conditions at all of the surrounding points. With a space-marching algorithm, the 

upstream flow conditions needed for the solution across a given station are known and 

present no difficulties. So attention is focused on the influence of the downstream 
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terms, which are not known. These must be approximated to advance the space-

marching calculation. 

As discussed above, for subsonic flow, information is passed from downstream to 

upstream via the streamwise pressure gradient, the streamwise diffusion and dissipa­

tion terms, and the streamwise convective terms in regions of reversed flow. Of these 

three, for the class of problems dealt with here, the streamwise pressure gradient 

is believed to be the most significant downstream term in the governing equations; 

the streamwise viscous stresses are small, and the regions of flow recirculation are 

limited. Under these conditions the pressure terms exert the greatest influence on 

the convergence rate. 

It follows that if the pressure field is known a pr ior i ,  or if a method is available 

for determining the pressure, then a single sweep of the space-marching solver will 

yield an almost-correct solution for all of the flow variables. Almost, because the 

streamwise diffusion and dissipation terms and the streamwise convective terms in 

regions of reversed flow are still not known. The pressure correction step in the 

algorithm permits the introduction of supplemental relationships to more efficiently 

develop the correct pressure field. 

Definition of the pressure correction 

The correction scheme used in this project is a modified version of the procedure 

presented by TenPas (1990). The method used by TenPas was extended to account 

foT a non-orthogonal grid. In the present space-marching formulation, two pressure 

values are retained at each point during each global iteration: the calculated pressure, 

p, obtained from the forward, global sweep, and the assumed pressure, p, resulting 
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from the pressure-correction step. These provide one of the convergence criteria and 

are used in the Poisson equation solver described below. As one measure of the error 

in the solution, the difference, e, between the calculated pressure and the assumed 

pressure is defined as 

e  =  pr^-p^  

If |e| is everywhere less than the specified convergence tolerance, convergence 

has been achieved. When the flow is unsteady, the time is incremented to the next 

level. For steady flows, the calculation is terminated. If the maximum absolute value 

of e exceeds the convergence tolerance, the assumed pressure field is corrected before 

performing the next space-marching sweep. The pressure correction, p', is applied 

using the defining equation 

pm+1 

The actual error in the assumed pressure field, 6 ,  is the diff^erence between the 

final (converged) pressure and the assumed pressure. Or 

6 = p°° 

At convergence, S, e and p' all approach zero at all points in the field. 

The ideal pressure correction is clearly equal to 6 .  Unfortunately, 6  is not easily 

determined. The methods described below use different assumptions to estimate the 

pressure correction. 

Point relaxation method 

The space-marching sweep directly provides a new estimate of the pressure field. 

The simplest correction method is to under-relax the computed change in pressure 
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at each node before executing the next space-marching pass. The equation for the 

pressure correction is simply 

p' = = we (3.1) 

Selection of the optimum relaxation factor, w, is problem dependent. 

Regardless of any relaxation factor dependence, a large number of iterations 

are necessary due to the fact that downstream pressure signals are only passed one 

station upstream for each global iteration. Thus, as many iterations as there are 

marching stations must elapse before the downstream boundary pressure is first felt 

at the initial marching station. During these initial iterations a finite error must 

exist due to the lack of boundary information in the local solutions. After this initial 

transient, additional iterations are needed to converge the solution to an acceptable 

tolerance. Because of these limitations, other methods are preferred. The one used 

exclusively in this study is described below. 

Pressure Poisson equation method 

The pressure gradients in the computational space can be isolated by writing 

the momentum equations in the form; 

^ = = ^ = A 

The functions on the right-hand sides of Equations 3.2 contain the convective and 

viscous terms that depend on the velocity field. Taking derivatives, the first of 

Equation 3.2 with respect to x, and the second with respect to y and summing 

yields a Poisson equation for the pressure written as 

Pxx  Pyy  — Sp  (3.3) 
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Where 

or, by using Equation 3.2, 

Since the pressures from the previous global sweep satisfy the momentum equa­

tions, these can be used to generate the source term, Sp, 

Unfortunately, at any intermediate iteration the space-marched solution is pro­

visional and the value of the source term is known only approximately, so a direct 

solution for the exact pressure field is not possible. Nonetheless, the converged pres­

sure field must satisfy Equation 3.3, which gives a soiind physical basis for estimating 

the pressure correction. 

An alternative form of Equation 3.3 in which the pressure correction explicitly 

appears is easily developed. The difference between the converged pressure and the 

assumed pressure values is defined above such that 

The pressure correction can be defined as 

p + = p m + l _ p m  

Assuming the "exact" pressure correction will be obtained implies 

= S 

and we attempt to solve for this "exact" correction by expanding the linear Equa­

tion 3.3 to include gives 

Pxx +Pyy  = (3.4) 
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where 

+  ̂ (Py)  -  Pxx -  Pyy 

If a generalized coordinate transformation is used, Equation 3.4 appears like this 

9p+ 5i)+ 
i ^xx  +  Cyy)-Q^ + ivxx  + vyy) -Q;^  + 

o 0 0 0 d^v '^  
^^x+iy)-^ ̂ inx+ny)-^ + '^{^xVx-^riy'ny)^^ = 5^+ (3.5) 

where 

5"̂ + = ^x-Q^UxP^  +  VxPt j )  +  V x -q;^{^xP^ +  V xP t] )  

+ iy -Q^ i i yP^  +  VyPT} )  +  +  VyPr ] )  

[ i xx  +  +  {vxx  +  vyy) -^  

+  ( (z  +  +  ivx  +  +  ̂ UxVX +  ̂ yVy)g^g^  

Thus, Equation 3.5 could be solved to estimate the pressure correction. However, 

solving an elliptic equation at each iteration presents a substantial computational 

burden. 

Another consideration is that in order for the solution of the pressure Poisson 

equation to be consistent with the converged solution of Equation 2.1, the common 

terms must be handled in the same manner. In particular, the streamwise pressure 

gradient must be forward differenced due to the stability restrictions on the space-

marching solver. 

A forward streamwise difference does not include pressures upstream. It is there­

fore assumed that the pressure correction at a given node is independent of the errors 

in the pressure upstream, and that the pressure correction upstream will rectify these 

,  /  2  ,  2 \ ^ ^ P  ,  n / i  ,  â  \  
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errors. With similar reasoning, the cross derivatives are equated on either side of the 

equation, and therefore, canceled. With this assumption, a parabolized form of Equa­

tion 3.5 is obtained which can be written as 

i ^xx  + i yy  + (z + + <^{vxx  +  Vyy)P^  + ^^ iVx  +  Vy)P^T]  = •5'^+ (3.6) 

where 

/ 9 9 dp 
5^+ = -{ îxx  + îyy  + îx  +  ̂ y)^  + '^{vxx  +  Vyy)Q:^  

+ <^{Vx + Vy)'Q;^Pr] — o^ilxx +'nyy)Pr] ~ <^{Vx + Vy)Prirj (3.7) 

The multiplier, a, is an arbitrary constant used to weight the stream wise and trans­

verse derivatives unequally. For a greater than one, this has the effect of "spreading" 

the correction in the transverse direction, for instance distributing a spike in pressure 

throughout the marching station. 

The development of Equation 3.6 and 3.7 from Equation 3.4 is presented in 

finite-difference form in Chapter 4. 

Notice that the downstream pressure boundary condition determines the pressure 

correction at the exit. Equation 3.6 is then integrated in the upstream direction with 

an implicit finite-difference technique. This backsweep procedure rapidly propagates 

the downstream boundary information upstream, with much less computational effort 

than solving an elliptic equation. 

As a final step in this pressure correction procedure, a relaxation factor on the 

estimate is applied such that the actual pressure correction is determined as 

p' = (3.8) 
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and the updated pressure field becomes 

(3.9) 

The value of w was set to 0.25 in all cases reported here. Values greater than this 

caused divergence. This value also seemed to result in the greatest convergence rate. 

Extension to Unsteady Flows 

As stated earlier, the present formulation originated as a solver for steady flows. 

For the present study, an unsteady formulation was required. It was believed that 

the iterative space-marching procedure could be used as a base from which to develop 

this unsteady solution procedure, the spatial sweeps being applied to converge the 

solution at each time step. 

At each time level the procedure is exactly as described above. Global sweeps 

for the four unknowns are performed with the pressure correction backsweep applied 

between each spatial iteration. The solution is checked for convergence after each 

global iteration is complete until the change is sufficiently small. The time level is 

then incremented. The solution from the previous time step is used as the initial 

guess at the new time. The change in the temporal solution is also monitored and 

can be used to terminate the calculation for problems which evolve to a steady state. 
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CHAPTER 4. NUMERICAL SOLUTION 

The discretization and solution of the resulting algebraic equations for the gov­

erning conservation laws are described in this chapter. The computational grid is 

described. The finite differencing of the momentum, energy, and continuity equa­

tions is explained. Various boundary conditions are addressed, and the method of 

solving the system of equations is described. The global pressure correction procedure 

is also presented in detail. 

Computational Grid 

In order to apply the finite-difference methods, the continuous flow field (see 

Figure 2.1) is divided up into discrete, four-sided cells. The flow variables are ap­

proximated at each corner of these cells. The cells are made up of lines of constant (, 

and 7/ which form the body-fitted mesh. The (t,j) indices correspond to the respective 

constant mesh lines. 

Grid spacing, skewness and aspect ratio directly influence the accuracy, stability 

and consistency of the finite-difference methods. It is desirable to concentrate nodes 

in regions of large gradients. The body-fitted mesh provides for this while maintain­

ing uniform spacing in the computational space. The code employs a generalized 

coordinate transformation which permits a non-orthogonal grid. This allows more 
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flexibility in grid construction than a strictly orthogonal mesh. Equations solved on 

highly skewed grids can become ill-conditioned. However, a moderately skewed, non-

orthogonal mesh can often give a better node distribution for arbitrary geometries. 

Symmetric H- and C-type grid topologies were successfully applied. The space-

marching direction direction) was aligned as much as possible with the primary 

flow direction in both cases. Grid lines of constant ( were fitted approximately 

normal to the primary flow streamlines and are termed "stations". Thus, in the case 

of an H-grid, the initial marching station ^ — constant line coincides with 

the upstream boundary, whereas for a C-grid, it is the geometric line of symmetry 

connecting the body surface with the upstream boundary — this is also the stagnation 

streamline. The ( = ^max — constant {i = imax station) surface is always located 

at the outflow boundary. The rjmax {j = jmax) surface defines the side boundary 

for the H-grid. In the case of the C-grid, it conforms to both the upstream and 

side boundaries. For either grid type, the line of symmetry coincides with the 7;^^^ 

(j = I) line. 

Full C-grid calculations were made, but attempts to compute flows that were 

not symmetric failed. It is also not clear if the present method will work for flows in 

which the location of the stagnation point is unknown. 

There are many techniques for generating the interior mesh points (see, for ex­

ample, Thompson et al. 1985). The Cartesian H-grids used in this study were gen­

erated using the stretching functions found in Anderson et al. (1984) and presented 

in Appendix B. The C-grids were constructed using GRAPE (Sorenson 1980). To 

minimize errors in the numerical solution, the following conditions were imposed on 

the generation of the body-fitted coordinates: 
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1. Physical boundaries were fit by surfaces upon which one of the computational 

coordinates was constant. 

2. The computational coordinates were scaled to produce a uniform mesh = 

At? = 1). 

3. Orthogonality on body surfaces was achieved as much as was practical. For the 

flat plate, the grid was Cartesian. The C-grid used for most of the results in 

this work on the cylinder for steady flow varied up to about 5 degrees from or­

thogonal on the rear (downstream portion) of the cylinder where orthogonality 

was most difficult to achieve. 

4. Grid skewness and grid aspect ratio were limited, although not formally mini­

mized. 

The Cartesian coordinates, {x ,y ) ,  of the node points do not appear explicitly in 

the transformed equations. They are used only to evaluate the metric terms. Defini­

tions of the metrics and the Jacobian of the transformation are given in Appendix A. 

The metrics were calculated using finite-difference expressions. These are also found 

in Appendix A. In practice, they were calculated and stored as one of the first steps 

in the program. 

Finite-Difference Equations 

The algorithm began as a steady, space marching scheme (TenPas and Pletcher 

1987). The present work includes the addition of time terms. The original space-

marching iterations were used as sub-iterations to converge the solution at each time 
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step. All values in the equations were evaluated at the new time level. However, the 

option of strictly space-marching was maintained, and the steady results shown were 

calculated using this mode of operation. 

The fundamental step in the space-marching procedure is to advance the solution 

of the governing equations from a given station i, to the next station, i -f-1. Described 

in this section is the formulation of the coupled, implicit, finite-difFerence equations 

for the unknown variables, q^, at station i + 1. With the space-marching method, 

the newly computed profiles of at and upstream of station i appear explicitly, 

and assumed or lagged values of at station i + 2 and downstream locations 

are required. The values at station i 4- 1 are implicit and are updated using Newton 

iteration. 

As described in Chapter 2, the transformed governing equations may be cast 

in several forms. The chain-rule conservation-law form is used for the momentum 

and energy equations, and the strong conservation-law (control-volume) form is used 

for the continuity equation. The numerical properties of the different forms and the 

reasons for selecting this combination follow. 

The finite-difference representations in the strong conservation-law form may be 

constructed such that the assembled set of equations is globally conservative. This 

property holds even on coarse grids, where the derivatives are not accurately approx­

imated. The truncation errors in the equations for adjacent nodes cancel, so that the 

summation of all of the difference equations is identical to numerical integration over 

the surface of the entire flow domain. With the chain-rule conservation-law form, 

products of truncation errors and finite gradients, in general, do not cancel. Global 

conservation is satisfied within reasonable accuracy, since the truncation errors vanish 
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for any consistent difference method as the grid is refined. 

The geometric considerations associated with these forms have been explored by 

Hindman (1982). With the strong conservation-law form, the metrics must be eval­

uated consistently with the particular finite-difference formulation used. Otherwise, 

numerical source terms arise due to truncation errors in the metrics. There are no 

such constraints on the metrics for the chain-rule conservation-law form. 

Upwind differencing in the momentum and energy equations requires that the 

finite-difference expressions vary from node to node. With the strong conservation-

law form it is time-consuming to adjust the differencing and preserve a globally 

conservative set of equations since correct representation of the type-dependent terms 

would require many different evaluations of the metrics. With the use of the chain-

rule conservation-law form, constraints on the metric terms are avoided. Although 

truncation errors can be significant on coarse grids, a global momentum and energy 

balance is achieved as the grid is refined. No such type-dependent terms appear 

in the continuity equation. Since the calculation of the metrics is thus simplified, 

to guarantee conservation of mass on coarse grids independent of truncation errors, 

the strong conservation-law form is used for the continuity equation. The special 

requirements imposed on the metric terms produce an algebraic equation that is 

identical to the finite-volume continuity equation in physical coordinates. 

The details of the finite-difference form of the momentum, energy, and con­

tinuity equations comprise the following sub-sections. In the marching direction 

(^-direction), the flux terms are strictly upwinded in the momentum and energy 

equations. For the transverse flux terms, a weighted average between central and 

upwind is used. The weighting is calculated to maintain stability. 
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Special consideration was required for the transverse pressure derivatives in the 

momentum equations. They were forward differenced in all the cases run for this 

study. The first-order representation of these pressure derivatives appears implicitly. 

They are corrected to second order explicitly. 

The one-sided differences, in both directions, reduce the problem of decoupling 

every-other node which can occur with central differences. 

Momentum equations 

The momentum equations in the chain-rule conservation-law form (Equation 

2.1) are expanded as finite-differences in the computational domain about the node 

located at {i + l,j). The differencing method employed for each of the terms within 

the flux vectors E and F is described below and summarized in Table 4.1. The 

finite-difference molecules at node (i -t- l,j) are shown schematically in Figure 4.1. 

The open circles represent known values at the present spatial sweep, the solid circles 

show the nodes which are implicit, and the crosses indicate where lagged values are 

used. The open circle with the cross within is an explicit point which is updated 

through the Newton iterations since it would appear outside the coefficient matrix 

bandwidth. The molecule on the left shows the points used in descretizing the flux 

and diffusion terms, the one on the right depicts the configuration for the pressure 

derivatives. 

The point of interest is at (i + 1, j). The example difference formulas given below 

are all expanded about that node. 
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Table 4.1: Summary of the finite-difference 
representations used in the mo­
mentum equations 

Derivative Type Direction Order 
pressure forward 1 

V pressure forward 1 

e diffusion central 2 

V diffusion central 2 
Cross diffusion central 2 

convection upwind 2 

V convection hybrid 1-2 

t  I  -1-2 i  i  +  2 

J +  2  

J + 1 

j  

i - 1  

i - 2  

i + l i -t- 1 i + 3 

Figure 4.1: Finite-difference molecules 
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Temporal terms Time terms were added to the original space-marching al­

gorithm. Because only the main diagonal of the coefficient matrix is affected on the 

implicit side, diagonal-dominance is enhanced. Therefore, a false time parameter 

may be introduced for steady flow cases. The result is a more stable algorithm. 

The finite-difference form of the temporal derivatives in the x-  and y-momentum 

equations, respectively, are as follows 

dpu ^  J  ~  
d t  At  

(4.1) 

dpv  ^  ~  
dt  At  

Linearization of the implicit (at time n -f 1) terms, is carried out in exactly the 

same manner as the flux terms in the continuity equation. 

pu =  [p]u  + [0]v 4- [^]p + [0]5 - [pû]  

pv  = [0]u + [p]v + [-^]p + [0]S - [pv] 
HI 

The terms with the caret are the linearized coefficients. They are updated through the 

Newton iteration at each marching station. Contained in Appendix C is a complete 

list of linearized variables. 

Streamwise pressure gradient terms The stream wise pressure gradient is 

strictly forward-differenced. The results presented in this work were obtained with a 

first-order representation, although a second-order accurate expression has also been 

coded. Downstream pressure values are estimated values (denoted with an overbar), 

resulting from the pressure Poisson correction procedure following the previous global 
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sweep. The first-order accurate, forward-difference formula at { i  -f 1, j) is 

(4.) 

And the second-order accurate, forward-difference formula is 

P(  -  ' ' 

Transverse pressure gradient terms Central-differencing of the transverse 

pressure gradient can cause the even and odd node pressures to decouple, resulting 

in a saw-toothed profile. Instead of adding dissipation to smooth this out, second-

order accurate, one-sided differences were used to link the pressures at neighboring 

nodes. These three-point difference formulas include nodes outside of the bandwidth 

of a block-tridiagonal solver. Rather than use a pentadiagonal solver, the difference 

formula was split into an implicit, first-order accurate term plus an explicit, second-

order correction. Thus, on convergence the solution is second-order. The direction 

chosen for the one-sided difference depends upon the side boundary condition. As 

an example, the second-order accurate (on convergence), forward-difference formula 

in the tj direction for the node located (i -1- l,j) is 

vT+I.m - PZU pR.u+2 -
^ At) 2AT] 

The values with the carots are updated within the Newton-linearization iterations. 

In this work, a forward difference was used exclusively. 

Viscous stress terms Second-order accurate, central-differences are used to 

approximate the derivatives in the viscous terms. The chain-rule expansion of the 
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viscous terms is given in Appendix D. First and second-derivatives of the velocity 

components appear in these terms, as well as first-derivatives of the metrics and 

viscosity. The viscosity is determined from the current estimate of the temperature, 

using Sutherland's law, which allows the viscosity and metrics together to be used as 

linear coefficients. 

The transverse second-derivatives and the associated first-derivatives are treated 

implicitly. The method may be illustrated with an example term in the rj direction 

of the form, 

= 0,^ Ujjrj + o^Urj (4.5) 

where the coefficient, a^, is a function of the metrics and the viscosity. The complete 

term can be written in implicit form as: 

{éur j )r j  % {A^  + (4-6) 

Where the implicit coefficients are evaluated by 

_ 4+1,; _ 4 + l , i + l - 4 + l , i - l  
(At/)^ ^ 4(A7/)2 

Equation 4.6 is obtained by expanding the derivatives in Equation 4.5 with 

central-differences about the location (i + l,j) as: 

,m _ n„,m I ,,Tn 

" (Â^)2 " ' 

4 = 
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The streamwise second-derivatives and the associated first-derivatives are han­

dled in much the same way, except known upstream values, lagged downstream values, 

and implicit values at the marching station are used. An example term of the form 

4- (4.10) 

expanded at the node located at ( i  4- l , j )  can be written as 

Where central-differences are used for the streamwise derivatives and the implicit 

coefficients are evaluated by: 

, _ <+!,; ,5 _ 

" (Af)2 - 4(A02 

Example forms of the mixed partial-derivative terms are: 

{a^T])^  =  (4.12) 

and 

{a^u^)T] = 4- arju*^ (4.13) 

The explicit central-difference form of Equations 4.12 is 

(«S)e « 

Where the coefficients are evaluated by: 

Aw 
4A^A77 
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.c _ <+2 J -
"^1 4A^A77 

Equation 4.13 appears similar. 

The mixed-derivatives used to expand Equations 4.12 and 4.13 at (z  +  l , j )  are: 

u -  "^2j'+l " ""5-2J-1 - ̂ ^j+l + ""W-I M 15) 
(«7 - 4A^A7J ^ ^ ^ 

m-1 
_ t+l)J+l 

2A?/  
urj = (4.17) 

Streamwise convection terms The differencing direction for the streamwise 

convective terms is strictly upwind. For accuracy, the second-order upwind method 

was used, except adjacent to boundaries. In regions of reversed flow the direction of 

the differencing was reversed, and the convective flux terms at the downstream nodes 

are lagged. Examples of the second-order accurate difference operators used for the 

node located at [i + l,j) are: 

For U > 0:  

For U < 0:  

Where: U = + v^(y) i j ^ i j  and is updated through Newton iteration. Note 

that the term evaluated at { i  +  l , j )  must be linearized since it is treated implicitly. 

See Appendix C for details of the linearization. 
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Transverse convection terms A hybrid differencing scheme is used for the 

transverse convective terms, formulated with a weighted average of central and up­

wind differences. Central differences were used whenever feasible. Possible instability 

was controlled by progressively weighting the differencing in the upwind direction to 

suppress the appearance of positive, off-diagonal coefficients. The criteria used to 

set the weighting is explained below. Although in the limit of upwinding, the formal 

accuracy was reduced to first-order, the type-dependency improves the physical repre­

sentation of the combined convection-diffusion terms. As an example, the transverse 

convection terms in the rj direction from the z-momentum equation are: 

(pu^)7]Vx + {puv)rjvy (4.20) 

The metrics are evaluated at (i -f- l,j). Approximating the convective derivatives 

about the location (i-(-l, j) with the hybrid scheme, and linearizing gives the following 

implicit terms for the u velocity component: 

The linearized coefficients are evaluated at each node. For purposes of clarity, the 

frozen coefficient expressions are: 

Vxipû) i+lJ+l+r]y ipv) i+l , j+l  
W+1 -

Vxipû) i+l , j+VyiP^) i+lJ  

~ AT, 

~ At; 

The forward and backward difference weight factors, / and 6, are determined by 

testing the implicit convective term coefficients against the coefficients of the implicit 
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viscous terms defined in Equation 4.6. Notice that the viscous coefficients are non-

positive, and that for central-differencing the weights, / and b, are both equal to 

one-half. The conditions that are satisfied are: 

For / = 1/2: if [(>1^ -f > 0, then shift toward backward differencing. 

Thus: 

and 

6  =  1 - /  

For b = 1/2: if [(A^ — — 6(7^-_^] > 0, then shift toward forward differencing. 

Thus: 
[ A ^ - A { )  

and 

/ = 1 — 6 

Otherwise: use central differencing. Thus: 

To illustrate the upwind adjustment, the t] direction example begun above is con­

tinued here. The implicit viscous terms on u in the rj direction for the x-momentum 

equation given in Appendix D are: 

Vxlt^VxUrjrj + {lJ'Vx)T]Urj] + VyÏMy'^rjî] + iMy)r]^'r]] (4.22) 

These terms correspond to the form of Equation 4.5. The implicit coefficients, 

and are then obtained from Equation 4.6. For the example term of Equation 4.22 
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the coefficients needed to determine the hybrid weight factors used in example Equa­

tion 4.21 are: 

(4.23) 

t  _  + vy{{ f^ 'ny) i+i , j+i  ~  

(4.24) 

= « 

Where the metrics are evaluated at (i + 1, j), except as indicated otherwise. 

Continuity equation 

The discretized form of the continuity equation is derived from the strong conservation-

law form of the governing equations (Equation 2.10). It is expanded in finite-volume 

form about the mesh location {i -H 1/2, j) to give 

-  pi  (Ei  -  E^)"+\  (Fl  -  Fir+^ 

Here the subscripts denote the faces of the resulting control volume as shown in Figure 

4 .2 .  Subs t i tu t ion  for  the  f luxes  def ined  for  Equat ion  2 .10 ,  and  cancel ing  =  Arj  

gives 

(pU)i+\  (pv) ; i+ ' -  (^v)j+i 
—At — + = ° 

where the contravariant velocities are 

U = ix 'U +  iyv ,  V  = 77a:it + T]yV 

To ensure global and local conservation of mass in spite of truncation errors, 

several conditions are imposed on the set of difference equations. To satisfy global 

conservation the assembled control volumes must fill the physical space, and the 
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I  --1 t  I  -t-1 

Eyj r - l - Ee 

r 
—

 

Figure 4.2: Continuity control volume 

common fluxes of neighboring cells must be identical. To be locally conservative, the 

calculated face areas must form closed control volumes. The first condition is easily 

met by assigning a control volume to each node. The other two conditions restrict 

the interpolation of the fluxes and the evaluation of the metrics as discussed below. 

By satisfying these conditions, the transformed difference equation is algebraically 

equivalent to numerically integrating the finite-volume continuity equation in physical 

coordinate form. 

Temporal term Consistent with the flow equations (continuity and momen­

tum), the thermal variable is lagged in the time derivative term. Density is therefore 

replaced by and only the pressure appears implicitly. An attempt was made to 

average the density at the east and west nodal points, but this caused a saw-toothed 

pressure profile. The solution was to approximate the density in the control volume 

by that at the east face, as indicated above. 
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Cell face center-point flux interpolation The east and west face fluxes are 

obtained directly at the nodes and {i,j) in the center of these faces. However, 

the fluxes at the centers of the top and bottom faces must be interpolated. Simple 

averaging among the four neighboring nodes leads to a central-difference expression 

that causes even/odd decoupling and produces saw-tooth profiles. To suppress this, 

the interpolation is done by a Taylor-series expansion biased to one side of the control 

volume center. Second order accuracy is maintained, but some dissipation error is 

introduced into the equation. For example, the east face flux terms at the location 

{i 4- 1/2, j 4- 1/2) are determined from the properties and gradients about the node 

at (i + l,j) as 

(pu}n  = + 

(pv)n  =  (pv) i+l j  +  

At/ dpu A^ dpu 

. 2 a?/ _ i+hj  [ 2  a ( .  i + l j  

At/ dpv  A^ dpv  

. 2 aT/ . i + l j  . 2 ad 2+1,J 

(4.27) 

(4.28) 

The derivatives were approximated with one-sided, first-order accurate differences. 

The streamwise derivative is always backward-differenced. The transverse derivative 

direction is opposite to that of the transverse pressure gradient in the momentum 

equations. To maintain a band-width of three, the correction terms are explicit. 

These explicit terms, indicated below with a caret, are lagged within the nonlinear 

coefficient loop. As an example, one of the north face terms is 

The south face flux at ( i  -f 1/2 ,  j  — 1/2) is determined similarly about the adjacent 

node at (i + l,j — 1). For example, the corresponding south face term is 

{pv)s  =  (^v) i+i  •_!  + »  4  
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The underlying requirement is that the south face flux from the cell associated with 

the node {i + l,j) be identical to the north face flux into the neighbor cell assigned 

to the node {i + l,j — 1). This can be verified by careful examination of the indexes 

in the equations above and by reference to Figure 4.2. 

All terms evaluated at the (t + 1) marching station, except those which arise 

from the interpolation are treated implicitly. Since these terms are nonlinear, they 

must be linearized. Details of the linearization are given in Appendix C. 

Control volume face areas The metric terms for each of the flux represent 

the face areas of the control volume. In order to ensure strict flux conservation the 

metrics must satisfy the geometric conservation law. Otherwise the control volume 

would not be closed, and a uniform velocity field would not satisfy the discretized 

continuity equation. Therefore, the metrics are evaluated for each different face, using 

the physical coordinates of the corner points of the control volume. This treatment 

of the metrics exactly fits the projected areas of the physical control volume faces. 

As an example, the projected area of the east face onto a line parallel to the x axis 

is given by 

= (»f )e = ^ (4.29) 

Energy equation 

The energy equation was formulated much the same as the momentum equations 

(see Figure 4.1). The chain-rule-conservation-law form was used. The streamwise flux 

terms were strictly upwinded. For the transverse flux terms, a hybrid of central and 

upwind differencing was used to avoid change of sign of off-diagonal terms. 
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A minor change from the momentum equation formulation was incorporated 

for the diffusion terms. The product rule for differentiation was not utilized before 

finite-differencing. Rather, the products of metrics and thermal conductivity were 

averaged and differenced along with the thermal variable. It was felt that this was 

more consistent with the spirit of the conservation law. The method used in the 

momentum equations resulted in a first derivative of velocity. A central difference 

used on this term has the potential to adversely affect the diagonal dominance of the 

system. This problem does not appear with the method used for the energy equation. 

There is no counterpart of dissipation in the momentum equations. These terms 

are handled in the same manner as the diffusion terms. For most of the flows of 

interest in this study, these terms were of little consequence. Therefore, they were 

treated explicitly. 

Thermal variable There are several possible choices of thermal variable. For 

instance, use of the dimensionless total or static enthalpy, or temperature are valid 

options. Because the energy equation was cast in chain-rule conservation-law form, 

it was found necessary to use a thermal variable which was small in regions of large 

gradients (near the wall). This is explained below. 

The problem arose due to the different formulations of the continuity and energy 

equations. It can be seen that the temporal and convective terms of the energy 

equation contain all of the elements of the continuity equation multiplied by the 

thermal variable. These terms should have summed to zero. However, due to the 

inaccuracies introduced by the chain-rule conservation-law form, the sum was, in fact, 

finite. This resulted in incorrect temperature fields. Since the inaccuracies were only 
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significant in the regions of large gradients of the mass flux terms, the choice of a 

thermal variable which became small in these regions solved the problem. 

For this reason, the thermal variable selected was 

Temporal terms The time derivative that appears in the energy equation is 

slightly more complicated than those in the other equations, in that it contains more 

terms. It appears thus: 

In practice, density is lagged here between global sweeps, but updated through the 

Newton iterations. This is because the combination, pS becomes a function of pres­

sure only, using the ideal gas law. Thus the thermal variable, S would not appear in 

the time derivative. 

The term {Tr  — is a constant for all cases considered here. Therefore, 

only the kinetic energy term requires linearization. This was accomplished as follows; 

sur f  

(4.30) 

= [2û]u  — ÛÛ,  xP" =  [2v]v  — vv  

The differencing of Equation 4.30 is simply 

At  

^(4.31) 
At  
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where the linearization of the kinetic term at the newest time is applied, and all 

linearized coefficients are updated by Newton linearization. 

A second-order, three-point version of this derivative is coded as an option. 

Thermal diffusion terms As with the viscous stress terms in the momentum 

equations, second-order accurate, central-differences were used to approximate the 

derivatives in the thermal diffusion terms. The conductivity is determined from 

the current estimate of the temperature, using the viscosity and Prandtl number, 

which allows the conductivity and metrics together to be used as explicit coefficient 

functions. 

The transverse derivatives were treated implicitly. The method may be illus­

t rated with an example term in the rj direction. The term appears as {XSr))r]- The 

coefficient. A, is a function of the metrics and the conductivity. The complete term 

can be written in implicit, finite-difference form as: 

Where the implicit coefficients are evaluated by 

a' . = + ' 
î+l,J + l 2(A7?)2 

2 

_ 4+ij+i+M+i.j 

2(A,)2 

M+1,J = (4.33) 

t ^ M+l,j + 4+lj-l 

2(A7;)2 

Equation 4.33 is obtained by expanding the derivatives of S with central-differences 
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about the half-node locations (t + l , j  ± 1) as: 

('^^'^'7)1+1,;+1/2 -
"4+1,7+1+4+ij 

R4+LJ' +4+1,7-1 

%ij+i ~ %ij 
At/ 

cm _ cm 

(4 .34)  

AT; 

The streamwise derivatives were handled in much the same way, except known 

upstream values, lagged downstream values, and implicit values at the marching 

station were used. An example term of the form (A^5^)^ expanded at the node 

located at (i + 1, j) can be written as 

« '^l+2js|+2j+i -

Where the coefficients are evaluated by 

(4.35) 

s ^F+2,;  +  4+1,;  
' i+2, j  

2(A77)2 

s 4+2,7+%1,;  
• i+hj  - 2(AT/)2 

A-? .  4+1,7+4,7-1 

h J 2(A?)2 

h J 

and 

Example forms of the mixed partial-derivative terms are: 

(A5t/)^ (4.36) 

(4 .37)  

The explicit central-difference form of Equation 4.36 is 

•jTTl—1 nîTl — 1 - ̂ 0-1 ) (4-38) 
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Where the implicit coefficients are evaluated by: 

AC 
î+2,j 4A^A7/ 

A?..= 
4A^A77 

The formula for 4.37 is constructed in identically the same way. 

Streamwise convection terms Second-order upwind differencing was used 

everywhere except adjacent to boundaries. In regions of reversed flow the direction 

of the differencing was necessarily reversed, and the terms at the downstream nodal 

points were lagged. 

For brevity, let 0 be defined as 

® = 2(Tr  -

Where the thermal  variable, S, is defined as 

T - T j: Ç _ ^sur f  

^  ~ '^sur f  

An example of the second-order accurate difference operators used for the node 

located at {i + l,j) is: 

For U > 0:  

For U < 0:  

Where: U = {yiP^^x  j and was updated through Newton iteration. Note 

that the terms evaluated at i + 1 must be linearized since they appear implicitly. 
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Transverse convection terms Hybrid differences were used for the trans­

verse convective terms, in exactly the same manner and for the same reasons as in 

the momentum equations. Potential instability was controlled by weighting the dif­

ferencing in the upwind direction to suppress the appearance of positive, off-diagonal 

coefficients. Formal accuracy was reduced to first-order in the extreme case. As an 

example, the transverse convection terms in the r] direction from the ^-momentum 

equation are: 

{puQ)rjr]x + {pvQ)r]r]y (4.41) 

The metrics are evaluated at (z + 1,j). Representing the coefficients as C, (note 

that linearization is required within 0) gives the following implicit terms for the 0 

component: 

+  { b  -  (4.42) 

The linearized coefficients are evaluated at each node. The frozen coefficients on S 

are 

Vxipû) i+l j+l+riy{pv) i+i j+l  
<?;+! = 'P 

Vx{pu) i+i j+Vy{Mi+l , j  
j ~ "P AT, 

V x { p û ) i + i J - i + r ] y { H i + l , j - l  
Cj_i  -  cp — 

The forward and backward difference weight factors, / and 6, are determined by 

testing the implicit convective term coefficients against the coefficients of the implicit 

diffusion terms defined in Equation 4.33. Notice that the diffusion coefficients are 

non-positive, and that for central-differencing the weights, / and b, are both equal 

to one-half. The conditions that are satisfied are: 
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For / = 1/2: if > 0, then shift toward backward differencing. 

Thus: ^ 

Oj+l  

and 

6  =  1 - /  

For b = 1/2: if j_ -^  — bCj_i]  > 0, then shift toward forward differencing. 

Thus: 

and 

f  =  l - b  

Otherwise: use central differencing. Thus: 

To illustrate the upwind adjustment, the r j  direction example above is continued 

here. The implicit diffusion terms on 5 in the rj direction are: 

+ (4.43) 

These terms correspond to the form of Equation 4.32. The implicit coefficients, 

A^, are then obtained from Equation 4.33. For the example term of Equation 4.41 

the coefficients needed to determine the hybrid weight factors used in example Equa­

tion 4.42 are: 

4+1,;+l = - [ i k v x ) i+l , j+l  +  ikvx) i+i j ]  
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2^[ i^Vy) i+l , j+l+{kny) i+\ , j \  

(4.44) 

4+1,;-l 

[ (#3/ )z+l j  +  i^Vy) i+i , j - i ]  

Dissipation The fact that a fluid is viscous implies that kinetic energy can be 

converted to heat through shearing action whenever a velocity gradient is present. 

For low speed (incompressible) flows, this phenomenon is often negligible. In higher 

speed flows, however, it may not be trivial. 

The description "dissipation terms" as used here includes all terms in the energy 

equation which involve viscosity. It should be noted that these terms include the 

so-called "dissipation function" as well as some shear work type terms. 

The dissipation terms as shown in Chapter 2 are 

The transformed shear stresses were described in Chapter 2. As an example, 

take the utxx term as shown: 

The derivatives of u are sufficient to show the discretization. Note that all 

— UTxx + ' ^^xy  

(4.45) 

— UTxy + 

2 r du du  dv  dv  '  

dissipation terms are explicit. The u derivatives found in are discretized as 
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follows 

3A( 

• / 1 

A( 

(4.46) 

Where the terms evaluated between nodes are arithmetic averages of values at adja­

cent points. 

The other derivatives which comprise the dissipation terms are treated in pre­

cisely the same manner. 

Numerical Boundary Conditions 

Several types of boundary conditions exist in the solution domain, as shown 

in Figure 4.3. Boundary conditions can specify the value of variables at nodes on 

the boundaries (Dirichlet boundary condition), derivatives of variables (Neumann 

boundary condition), or the conservation equations may be solved on the boundaries 

— occasionally modified to account for information across the boundary. At interior 

nodes adjacent to boundaries, the finite-difference equations may be restricted so 

that values at locations outside the domain are not needed. For example adjacent 

to the inlet boundary on an H-grid, the second-order backward-difference formula 

is replaced by the first-order method. The reduction in accuracy is not significant, 

since only those gradients that are negligibly small are affected. The specification of 

conditions at each of the boundaries and the modifications needed in the equations 
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at nodes adjacent to these boundaries follows. 

free stream 

inflow outflow 

body symmetry 

Figure 4.3: Boundary conditions 

Upstream boundary conditions 

For the upstream boundary, the inlet flow profiles of all the the variables were 

specified (the pressure is recalculated between iterations; see the section on down­

stream boundary conditions below). The profiles must be consistent with the desired 

mass flow, Reynolds number and Mach number. The bulk properties at the inlet, 

along with the flow field reference length, were used to make the variables dimen-

sionless. 

Since the variables were all specified, there is no need to solve the governing 

equations on the upstream boundary. The equations were solved at the first sta­

tion inside the boundary. These equations utilize the known conditions at the inlet. 

Second-order, one-sided diflferences that would ordinarily use data from two upstream 

stations were restricted to the first-order method. 

For the H-grid, it is notable that the upstream pressure influences the flow so­
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lution only through the density, since the streamwise pressure gradient term was 

forward differenced. 

Side boundary conditions 

For flow over an isolated body, the side conditions should represent far-field flow. 

For these isolated bodies, the edge of the grid was located far from the body surface. 

The streamwise velocity component was explicitly specified equal to the free stream 

velocity, and the pressure was explicitly specified assuming uniform total pressure. 

The transverse velocity components were determined implicitly with the specification 

that the gradient normal to the boundary is zero. The continuity control volumes 

adjacent to the boundary were extended to reach the boundary. 

Solid wall The conditions set on a solid wall were some of the easiest to 

accommodate. The velocity was set to zero. The pressure on the boundary was 

calculated such that the pressure gradient normal to the wall, was equal to 

zero. The temperature on the wall was held constant for all cases reported here — 

therefore, S was set to zero. 

Downstream boundary conditions 

The governing equations were solved at the downstream station in the same 

manner as for interior stations, with the following modifications to the finite-difference 

equations. 

Streamwise and cross derivative diffusion and dissipation terms were assumed to 

be small compared to the corresponding transverse terms. 
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For positive stream wise velocity, the stream wise convection terms were unchanged, 

but if reversed flow was present at the outflow boundary, convection of momentum 

from downstream was set equal to zero. It was considered important to set the 

outflow boundary sufficiently downstream of the disturbance so that the flow is not 

reversed at this boundary. However, during the iteration process, before convergence 

is achieved, the velocities can often be negative here. 

The forward streamwise pressure difference required a known downstream pres­

sure, located one step outside of the grid, which imposes the exit flow pressure field 

upon the interior flow solution. For flows considered here, this downstream pressure 

was initially set equal to the free stream pressure. The entire pressure field can be 

adjusted after each pressure backsweep to maintain a constant inlet pressure. This 

was accomplished by simply adding a constant value to the pressures at each node 

point. The value added was calculated such that the inlet pressure would be cor­

rected to the free-stream value. Therefore, the boundary condition for pressure can 

be considered applied to the upstream boundary. It should be noted that, for the 

external flows discussed in this work, this correction was negligible. 

It is assumed that the downstream boundary is located sufficiently far from 

any disturbance that the transverse pressure gradients are negligible. Should this 

not be the case, an appropriate pressure profile must be specified to establish the 

downstream pressure variation. 

Solution of the System of Discretized Equations 

To advance the space-marching solution, the finite-difference equations and bound­

ary conditions for all nodes at station i -t- 1 (a line of constant () are assembled into 
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a system of linearized equations for the primary variables, q^. The implicit terms 

are all located at station i + 1. 

Newton linearization with coupling 

The Newton linearization procedure is applied to the nonlinear convective terms 

in the governing equations. The nonlinear functions are analytically difFerentiable, 

allowing the terms to be expanded with the Taylor series about the nodal values 

from the previous global iteration. Second-order terms are discarded, leaving an 

expression that is linear in q^. Examples of the quasilinearized terms are shown 

below. The terms with carots are all evaluated using known values. The coefficient 

on the thermal variable, S in the momentum and continuity equations was zero in 

all cases for simplicity. This is possible because of the minor effect the temperature 

has on the flow solution for the cases of interest here. 

The linear system is solved using the provisional coefficients. When the solu­

tion resulted in a large change in the variables, the quasilinearization was performed 

about the new values, and the solution was repeated using the updated coefficients. 

Since the algorithm entails global iteration it was not necessary to converge the non­

linear coefficients to high accuracy during each marching sweep. A table of linearized 

coefficients is included in Appendix C. 

pu =  
\p]u  -{- [0]r + [û]p -F [0]5 - [ûp]  

RT 
(4.47) 

puv  =  
[vp\u  +  [v ,p \v  4- -I- [0]5 — [2uvp\  

RT 
(4.48) 
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The linear system 

The difference equations and boundary conditions at station i + 1 form a block-

tridiagonal system of equations for q^. The inclusion of implicit terms in the differ­

ence operators given above was restricted to the adjacent nodes in order to preserve 

the tri diagonal structure. This type of linear system is easily solved by a block 

elimination procedure, using the routine by Chakravarthy found in Anderson et al. 

(1984). 

Global Pressure Correction Procedure 

Methods for correcting the assumed pressure field to accelerate convergence of 

the global iterations were presented in Chapter 3. The method employing a simple 

algebraic operation was described in sufficient detail. The finite-difference method 

of implementing a pressure correction based upon the pressure Poisson equation is 

described here. The finite-difference form of the transformed Poisson equation will 

be presented immediately, then manipulations will be performed on that. The as­

sumptions used to parabolize the equation are also presented. 

Finite-difference form of the pressure Poisson equation 

The momentum equations can be manipulated to describe the pressure field by 

a Poisson equation in Cartesian coordinates (see Chapter 3). The Laplacian can be 

transformed to generalized coordinates by introducing the metrics. This looks like 

dv  dp  0  0  d^v  
Uxx+îyy)g^  + {Vxx+Vyy)Q:^  +  {^x+^y)-^  + 
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2 2 
iïïx + ~ (4.49) 

where the right-hand-side, Sp is constructed from the pressure field which resulted 

from previous calculations. It is 

Sp = { ixx- \ - iyy) -^  +  {r]xx- \ - r}yy) -^  

+ + 2(^a:ï?x + ̂ y iy) -^  

For brevity, the following definitions are made: 

—  ^ x x  +  ̂ y y ^  C f f  =  T j x x  +  V y y i  

=  V x  +  V y i  —  ^ { ^ x V x  +  ̂ y V y )  

The equations can be expressed in more compact form using the differencing 

operators defined as: 

first order 

and 

second order -

and 

A>( ). . - ̂ )i+lJ ( Kj  

A,( 

c2/ \ . _ ( )i+lj j + ( 

f2 /  k , j  +  i  h , j - l  
)z,;- ^^2 
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Thus Equation 4.49 becomes 

1 , j  -  ) +  ̂ 'v  [(Pi+1 , j  -  %' ) - (p^- - 1 , j  )1 + 

Crjr jS^p^ j  +  - P^lJ+l) - (PR-Ij-I - P^lj_l)] = Sp 

(4.50) 

Where 5p is calculated thus 

Sp = -  P%) + <^V^VPi! j  +  %[(PI+ÏJ  -  P%) -

+ ~ (pl+w-i " Pi^i,j-i)K4.51) 

In order for the global iteration cycle to converge, the finite-difference form of this 

equation must be consistent with the finite-difference form of the momentum equa­

tions. This restricts the streamwise derivatives only, since the transverse direction 

is implicit. Thus ^ is forward differenced using a first order, two point difference. 

q 2 d-pe  
The second derivative, can be considered as and is differenced 

n+u-Pi , j  vurn-u  

— 

Here the difference for (p<r). i . is consistent with the momentum equations. 

Three levels of updated pressures appear in the pressure update equation. An 

overbar is used to denote the pressure resulting from a pressure backsweep, p^~^ 

and The superscript indicates the iteration level. The pressure from the previous 

forward global sweep has only the superscript, m — Differences in pressure which 

are used in the equations and actually solved for are defined below. 

From Equations 4.50 and 4.51, the "error" in p can be solved for by subtracting 
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^ from each of the pressures. To facilitate this, let 

p+^-m+l_pm ^ g = 

Using these definitions in Equation 4.50 and 4.51 results in 

^v¥ht,j + ~ Pt- lJ+l^  ~  ̂ Pt+l , j - l  ~  = ^p+ 

(4.52) 

Where 

Sp+ = 

+ C'r jTjS^H^j  -  C^^[e i_ i j^ i  -  ei_ i j_ i]  

A "stretching" factor is introduced to emphasize the rj derivatives over the ^ 

derivatives. This facilitates "spreading" spikes and errors in the transverse direction. 

It takes the form of a multiplier, a (greater than one) on the 77 derivative terms on 

both sides of the equation. The purpose was to enhance the convergence rate. So 

(p i+1 , j  -  pt j  )  +  « ^^71  ,j ~  p f j  )  ~  (Pi j  ~  1, ; )]  +  

aCj jr jS^pf j  +  -  pf - l j+l )  -  (P i+l , j - l  -  Pi- l , j - l^^  =  ^p+ 

(4.53) 

and 

'5'p+ -

+ aC'r j r jSpiJ  - j+i -
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Various values of a were employed. For the flat plate cases, a value of 100 - 200 

was found to be most efficient. For the cylinder, values exceeding 10 tended to cause 

problems early in the calculation. After some measure of convergence was achieved, 

or several time steps had been completed, the value could be raised to approximately 

100 with an improvement in convergence rate. In no cases was the solution dependent 

on the value of a. 

Parabolizing assumptions As it stands, Equation 4.53 would require an el­

liptic solver. It is desired to develop a procedure which will quickly carry pressure 

information from regions downstream to regions upstream with a minimum of com­

putational effort. It is therefore prudent to make assumptions which will allow this 

to be done in a parabolic manner. The following assumptions were made to allow for 

this. 

or 

= "i-lj-1 

These assumptions are not completely arbitrary. They are based on the observation 

that pressures at a given node are not directly affected by pressures upstream. 

Equation 4.53 is now simplified to 

C((p^ij - pf j )  +  
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and S 4- becomes p-t-

^p+ = + ' ^^VV^hhj  

It should be apparent now that only values at and downstream of the station { i , j )  are 

required, not upstream. Thus, this equation can be marched from the downstream 

boundary to the initial marching station (upstream boundary for an H-grid; the line 

of geometric symmetry in front of the body for a C-grid). 

The pressures on the out-flow boundary are not corrected. The solution advances 

upstream using a scalar tri diagonal matrix solver at each station. The pressure 

information is thus rapidly transmitted in this direction. 

To maintain a constant upstream pressure value, the pressure field can be ad­

justed by adding a constant to the pressure at each node point. The pressure gradients 

are maintained with this method, and the inlet pressure can be specified. 
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CHAPTER 5. RESULTS 

Here some representative results obtained from the space-time marching scheme 

are presented. Wherever possible, empirical and theoretical results are used for com­

parison purposes. In some instances, most notably the low Reynolds number cases, 

experimental data were not available and thus comparisons were made with the nu­

merical results obtained by others. New heat transfer results are presented for the 

case of the impulsively started cylinder. 

Semi-infinite Flat Plate 

A simple example was used first to verify the program. Flow over a semi-infinite 

flat plate is well understood from boundary-layer theory and thus makes a good test 

run. 

Steady flow 

A 53 X 41 H-grid with 28 marching stations upstream of the leading edge was 

used. Nodes were clustered in regions where high gradients were expected. Algebraic 

stretching functions found in Anderson et al. (1984) were utilized to accomplish this 

(see Appendix B for details). To determine the stretching parameter, which dictates 

the level of clustering in the boundary-layer, the procedure below was followed. 
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1. The theoretical, laminar boundary-layer thickness was calculated at the outflow 

2. A given number of points were specified (commonly, 20) to reside in this thick-

3. Newton-Raphson iteration was carried out to solve for the stretching parameter. 

A Reynolds number of 100,000, based on the portion of the plate within the 

computational domain, was used. The Prandtl number was specified as 0.7. Cases 

with Mach numbers from 0.05 to 0.4 were run successfully. Results shown here are 

for a Mach number of 0.05. 

The plots of Figure 5.1 are representative of the results obtained. The skin 

friction plotted here is defined as 

The Nusselt number is the local value, based on the x  location along the plate. 

The very slight discrepancies in the leading edge region are to be expected since 

boundary-layer theory does not include leading-edge effects. Also, the present re­

sults may have been affected by too few grid points in the viscous region very near 

the leading edge. The divergence of the plots near the trailing edge is somewhat 

disconcerting. The solution is apparently affected adversely by the treatment of the 

boundary conditions. The results overall help to verify that the code is sound. 

boundary. 

ness. 

where 
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• Skin friction - Theory 
- Skin friction - Present Results 
- Nusselt number - Theory 
- Nusselt number - Present Results 
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Figure 5.1: Skin friction and local Nusselt number on a flat plate 
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The velocity and temperature profiles at various locations on the plate are pre­

sented in Figures 5.2 and 5.3. In Figure 5.2 the velocity is seen to develop from a very 

slug-like profile to the characteristic Blasius shape. The Blasius solution is plotted 

for the largest x location for comparison. The temperature profiles of Figure 5.3 show 

the growth and development of the thermal boundary-layer. The temperature profile 

corresponding to the Blasius solution plotted in Figure 5.3 was obtained through nu­

merical integration of the nonlinear ordinary differential Blasius equation along with 

the corresponding energy equation 

with the boundary conditions 

/(o) = 0, /(o) = 0, /'(oo) = 1, r(o) -1, r(oo) = o 

In the above equations, /' = ^5 F = ^ ~ 2/\/and the primes 
~ •'•surf •'•^ » 

indicate differentiation with respect to r j .  

The calculation ofsteady flow over a flat plate was performed very efficiently 

by the space-marching scheme. The convergence rate was exceptionally rapid for 

this case. Only about 20 iterations were required to meet the convergence criterion 

of |e| < Approximately 1.6 milliseconds were required per grid point per 

iteration on a Cray X-MP. 

Unsteady flow 

The impulsively started flat plate has been presented as a test case for the 

boundary-layer equations by several researchers (see e.g., Hall 1968, Kwon 1987). 
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-- At X = 0.00 
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— Blasius at X = 0.77 
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Figure 5.2; Velocity profiles for various locations on a Hat plate 
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Figure 5.3: Temperature profiles for various locations on a flat plate 
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This case was computed here to validate the time-marching capabilities. 

A 63 X 64 H-grid was used. Upstream of the leading edge were 28 points. The 

Cartesian grid was modified to cluster points in regions where large gradients were 

expected. 

A dimensionless time step, -y-A—, of 0.02 was employed. The initial conditions 
J j f  J  Uj*  

specified represented uniform flow. 

As for the steady case, a Reynolds number of 100,000 was used here. The flow 

was incompressible with a Mach number of 0.1. The Prandtl number was set to 0.7. 

Shown in Figure 5.4 are both flow and thermal results. The abscissa is a di­

mensionless time based on a particular x-location on the plate, . The values on 

the ordinate were made dimensionless using the same x location. The skin friction 

plotted here is deflned as 

SO that the steady state value, of C^yfRe according to theory, is 0.332. The Reynolds 

number which is used to normalize each of the ordinate values is based on freestream 

conditions and the x location on the plate. The numerical results of Ramin (1990) 

and Watkins (1975) also appear on this plot. Both of these researchers solved the 

boundary-layer equations in their work. 

The results are quite acceptable.' It is believed, however, that better accuracy 

could be achieved through grid refinement. 

The present method efficiently handled this case as well. Only one or two sub-

iterations were required at each time step. 
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Skin Frict 
Stanton No. 

Present Results 
Present Results 
Ramin (1990) 
Watkins (1975) 

Figure 5.4: Skin friction and Stanton number at a point on an impulsively started 
fiat plate 
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Right-Circular Cylinder 

As a representative blunt body, the right-circular cylinder was chosen. In real 

flow situations, the Reynolds number limit for steady flow for this geometry is about 

forty. For Reynolds numbers higher than this, vortices begin to be shed in a periodic 

(in time) fashion, resulting in an unsteady flow. Numerically however, steady flows 

can be calculated for much higher Reynolds numbers using the steady equations. 

While there has been much flow data presented for this geometry over the years (see 

e.g., Son and Hanratty 1969, Fornberg 1980) there is a noticeable shortage of heat 

transfer data for low Reynolds numbers. 

Steady flow 

Most of the results shown in this section are for a Reynolds number (based on 

diameter) of 40. Results for other Reynolds numbers are also mentioned. The Mach 

and Prandtl numbers were set to 0.05 and 0.7, respectively, in all cases. The C-grid 

extended 20 diameters upstream, downstream and to the side of the cylinder. It con­

tained 70 marching stations and 52 points in the transverse direction. Approximately 

170 iterations were required to achieve convergence. 

Shown in Figures 5.5 - 5.13 are comparisons of the present results with some of 

the available data from the literature. 

The skin friction, shown in Figure 5.5 is defined as: 

where Tyj is the normal derivative of the tangential velocity. As seen in this figure, the 

present results compare well with theory and boundary-layer results in the stagnation 



www.manaraa.com

95 

region. The theory (Cebeci and Bradshaw 1984) is not intended to be valid for 

locations far from the stagnation point. It says 

Cy = 3.486^ 

where Ô is in radians. 

Boundary-layer theory is not valid past the point of separation and, for skin 

friction, characteristically over-predicts the values past the actual maximum. Chen 

and Fletcher (1990) used a coupled strongly implicit procedure to compute the skin 

friction shown. The experimental results tend to be a bit sporadic in the first twenty 

degrees but overall compare well. It should be noted that these data by Acrivos 

et al. (1968) are for a variety of Reynolds numbers ranging between 61 and 150 

inclusive (using a splitter plate to maintain steady flow). They scaled their results 

with Reynolds number as in Figure 5.5 and found them to be independent of the 

Reynolds number. 

To validate the present scheme further, surface vorticities for flows of higher 

Reynolds numbers are shown in Figures 5.6 and 5.7. The vorticity is defined using 

dimensionless velocities and lengths 

du dv 
" " " â î  +  â ï  

The same grid as used for the Re = 40 calculation was used here also. For the 

Reynolds number of 100 case, 285 iterations were required; 520 were needed to con­

verge the solution for the Reynolds number of 200 case. The data of Dimopoulos and 

Hanratty (1968) are the only experimental results shown. They used an electrochem­

ical technique to measure the velocity gradients on the cylinder surface. Their results 

were for flow over a cylinder with a splitter plate at a Reynolds number of 210 (circles 
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• Chen and Fletcher (1990) 
- Boundary Layer 
- Theory (Cebeci and Bradshaw 1984) 

Exp: Acrlvos et al (1968) 
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Figure 5.5: Skin friction on a right circular cylinder at Re = 40 
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in Figure 5.7) and over a cylinder with no splitter plate at a Reynolds number of 219 

(triangles). The present results appear to agree better with the numerical results of 

Son and Haratty (1969). The results of Fornberg (1980) were computed numerically 

as well. All of the numerical results were calculated assuming symmetric flow. 

Son and Hanratty (1969) explained the difference between their numerical results 

and the experimental results of Dimopoulos and Hanratty (1968) as being due to 

unsteadiness. They said that the splitter plate appeared not to have stabilized the 

wake completely. This appears to be a valid argument, considering that the trend of 

adding the splitter plate was to reduce the vorticity on the front half of the cylinder, 

while maintaining approximately the same values in the wake region. So it is expected 

that the trend would continue as the wake is further stabilized as it is in the numerical 

results. 

From the results shown in Figure 5.7, it appears that vorticity in the separated 

region is well predicted using a symmetric flow field and a steady solver. The heat 

transfer results shown later do not exhibit this tolerance. 

The pressure coefficient is shown in Figure 5.8. Some scatter of the data is seen 

here too. The present results tend to follow the same trends as the others. 

A comparison of more flow results is shown in Figure 5.9. The abscissa is the 

distance (made dimensionless with the radius) from the cylinder center. The ordinate 

is the velocity on the line of symmetry. The results of Majumdar and Rodi (1985) 

and Nieuwstadt and Keller (1973) are calculated. Coutanceau and Bouard (1977) 

used a photographic technique in which they were able to measure the length of the 

traces made by particles during the time of exposure. In an attempt to improve this 

profile, a refined grid (100 x 64) with improved resolution in the wake was created. 
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Figure 5.6: Vorticity on the surface of a cylinder at Re = 100 
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Figure 5.7: Vorticity on the surface of a cylinder at Re = 200 
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Figure 5.8: Pressure coefficient over a right circular cylinder at Re = 40 
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The results shown here exhibit some of the most obvious response to grid refinement 

(more on grid refinement is discussed below with regard to Table 5.1 and Figures 5.14 

- 5.16). 

Nusselt number results are compared with theory and experiment in Figure 5.10. 

The work of Eckert and Soehngen (1952) is for a Reynolds number of 23. Frossling's 

well-known theory is for the front portion of the cylinder only. The same should be 

said of the boundary-layer theory. The results from the present work lie in between. 

Although Chun and Boehm (1989) solved the full Navier-Stokes equations, their 

results tend to lie close to the boundary-layer solution. It should be noted that the 

plot for Chun and Boehm (1989) is for a Reynolds number of 50. The slight decrease 

in Nusselt number at the stagnation point shows up to some degree in many numerical 

and experimental plots. It is perhaps a bit more pronounced in the present work than 

in most. 

The Nusselt number was averaged over the body surface for comparison of av­

erage Nu vs. Re correlations. The results can be seen in Figure 5.11. For very low 

Reynolds numbers the space-marching scheme tends to over predict, but not exces­

sively. However, at more moderate Reynolds numbers the agreement is excellent. 

Figures 5.12 and 5.13 are for higher Reynolds number flows. Both figures show 

a comparison between the numerical results of Karniadakis et al. (1986) and the 

present results. Figure 5.12 is for a Reynolds number of 100, while Figure 5.13 is for 

a Reynolds number of 200. The comparison is not particularly good, but is especially 

poor in the separated region. This is because Karniadakis et al. (1986) solved the 

entire flow domain and, therefore, vortices were shed. The present work had no 

provision for this type of unsteadiness. 
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Figure 5.9: Centerline velocity downstream of the trailing edge of a cylinder at 
Re = 40 
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Present Results: Tsurf = 1.033 
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Figure 5.10: Local Nusselt number over a right circular cylinder at Re = 40 
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Figure 5.11: Average Nusselt number over a right circular cylinder for various 
Reynolds numbers 
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Figure 5.12: Local Nusselt number over a right circular cylinder at Re = 100 
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Figure 5.13: Local Nusselt number over a right circular cylinder at Re = 200 
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A summary of some interesting aspects of the solution are tabulated in Table 5.1. 

Comparisons are made with the results of Fornberg (1980). Results from two grids 

for the present work are shown for the Reynolds number of 40 case. The column 

headed '40c' is for a 70 x 52 grid with 41 nodal points on the cylinder surface. The 

'40f' column contains results for a 100 x 64 grid with 58 points located on the body 

surface. The separation angles compare quite favorably, as do the stagnation point 

pressure coefficients. Since the purpose of this run was to test the resolution of the 

heat transfer near the leading edge, the grid tended to be course downstream of the 

cylinder. The grid refinement for the Reynolds number of 40 case shows that better 

resolution was possible with more favorable nodal-point clustering. 

Table 5.1: Summary of results for steady flow over a cylinder at various 
Reynolds numbers 

Present Results Fornberg (1980) 
Reynolds number 40c 40f 100 200 40 100 200 
Separation angle (degrees) 127 125 110 101 124 111 94.3 
Reattachment point (radii) 6.48 5.93 16.2 23.6 5.48 13.7 28.0 
Front stag. pt. pressure coeff. 1.12 1.12 1.04 1.03 1.14 1.06 1.02 
Rear stag. pt. pressure coefF. -.49 -0.49 -.38 -.28 -.46 -.34 -.24 

A rigorous comparison of CPU times used by various researchers is a near-

impossibility since the times from different computers cannot be compared easily. 

To give some idea of the times used in this study, as well as those of Son and Han-

ratty (1969), CPU times for two Reynolds numbers are shown in Table 5.2. Note 

that the calculation in the present study included the energy equation, whereas Son 

and Hanratty (1969) resolved the flow only. 

Some indication of the effects of grid refinement are seen in Figure 5.9 and 
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Table 5.2: CPU times, in minutes, required to con­
verge the steady solution of flow over a 
cylinder 

Re 
Researchers Computer 40 200 
Present Results Cray X-MP 8.2 25 
Son and Hanratty (1969) IBM Model 75 40 420 

Table 5.1. This is carried further in Figures 5.14 - 5.16. The Reynolds number of 

40 case was run with two different grids. The fine grid was 107 x 64 with 63 points 

defining the cylinder. The course grid was 62 x 52 and had 29 points on the cylinder 

surface. The skin friction and pressure coefficient results (Figures 5.14 and 5.15) 

show virtually no change with grid refinement. 

The heat transfer results show more of a change than the flow with grid refine­

ment. The Nusselt number, as shown in Figure 5.16 varies most in the region of the 

stagnation points. The fine grid was four times finer near the front stagnation point 

than the course grid (points every g degree, compared to every 2 degrees). More 

points were clustered in the wake region for the fine grid as well. This helps explain 

the changes observed near these stagnation points. 

In general, very good results were obtainable with moderately course grids for 

this case. The extra computer effort required to compute the solution on a fine grid 

may not be justified in many instances. 
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Figure 5.14: Effect of grid refinement on skin friction for a Reynolds number of 40 
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Figure 5.15: Effect of grid refinement on pressure coefficient for a Reynolds number 
of 40 



www.manaraa.com

I l l  

1.2 

-- Fine grid 107 x 64 
- Course grid 62 x 52 

1.0 

0.8 

-e 
3 

"O 

0.6 

0.4 

x 
\ 

\ 
\ 
\ 
\ 

\ 
\ 

0.2 

0.0 
50 100 

I I I 

150 200 

0 (degrees) 

Figure 5.16: Effect of grid refinement on Nusselt number for a Reynolds number of 
40 
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Unsteady flow 

Unsteady cases are of two sorts for flows over a blunt body. In one type, the 

changes in time are due to changes in time of the boundary conditions. These changes 

may appear as a step-change, as in flows which evolve from a stagnation condition, 

or the boundary conditions may change continuously throughout time. 

In the second case, the boundary conditions are steady. Portions of the flow 

are inherently unsteady. An example of this case is the vortex-shedding behind a 

cylinder. 

Impulsively started cylinder To further validate the temporal terms, the 

case of a right-circular cylinder, started from potential-flow conditions was attempted. 

A symmetric C-grid with 109 x 64 node points was used. There were 41 points placed 

on the body surface. The grid extended 15 diameters upstream, downstream and in 

the transverse direction. A dimensionless time step of 0.025 was used. To compare 

with other numerical data, as well as experimental results, the Reynolds number 

based on diameter was set to 550 and the Mach number to 0.1. As above, the 

Prandtl number was fixed at 0.7. 

The results of this case are shown in Figures 5.17 - 5.24. Figures 5.17 - 5.21 are 

shown for comparison with the work, of other researchers. The remainder however, 

are believed to be new contributions for this type of flow. 

In Figure 5.17, the maximum negative velocity on the line of symmetry, and its 

location are plotted. Both are dimensionless. A second-order polynomial was used 

to interpolate between nodal points for both values. The abscissa was nondimen-

sionalized using the radius, r, of the cylinder, ^ / . The experimental results of 
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Coutanceau and Bouard (1980) and the numerical results of Chamberlain (1987) are 

shown in this figure for comparison. 

The upper two curves represent the dimensionless length, and are labeled in the 

legend as 'x'. The lower curves are the dimensionless velocities, labeled 'u' in the 

legend. 

At large times, the quality of the results falls off. This is believed to be due to 

an overly course grid. 

The local vorticity, w, for integer values of the dimensionless time, —, is 
r I u-p 

shown in Figure 5.18. Some comparisons to Loc's (1980) numerical data are found 

in Figures 5.19 - 5.21. In Figure 5.21, at a time of 5, Chamberlain's (1987) numer­

ical data are also shown. The agreement is, in general, only fair. Loc (1980) and 

Chamberlain (1987) used 0-grids of dimensions 61 x 61 and 61 x 65, respectively. 

They both found that a secondary vortex was formed at approximately 140 degrees. 

It was most noticeable at the later times. As seen in Figure 5.22, this structure was 

not resolved in the present study even at a dimensionless time of 5. Therefore, the 

vorticity falls short of the other researcher's values at this point. 

New results for this case are found in Figures 5.23 and 5.24. The spatially 

averaged Nusselt number is plotted as a function of dimensionless time in Figure 5.23. 

The correlation of Churchill and Bernstein (1977) is also plotted for comparison. This 

correlation is for steady (time averaged) flow at steady state. 

To illustrate the development of the temperature solution, the local Nusselt 

number is plotted against the angle measured from the front stagnation point in 

Figure 5.24. Comparison to Figure 5.18 points out the fact that the temperature 

field seems to develop more quickly than the flow solution. Although both quantities 
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Figure 5.17: Maximum negative velocity on line of symmetry downstream of a right 
circular cylinder and its location 
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Figure 5.18: The evolution of the vorticity on an impulsively started right circular 
cylinder in crossflow 
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Figure 5.19: Vorticity on an impulsively started right circular cylinder in crossflow 
at a dimensionless time of 1 
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Figure 5.20: Vorticity on an impulsively started right circular cylinder in crossflow 
at a dimensionless time of 3 
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Figure 5.21: Vorticity on an impulsively started right circular cylinder in crossflow 
at a dimensionless time of 5 
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Figure 5.22: Streamlines over an impulsively started right circular cylinder in cross-
flow at a dimensionless time of 5 
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Figure 5.23: The evolution of the average Nusselt number on an impulsively started 
right circular cylinder in crossflow 
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are still evolving, even for time i = 5, the vorticity appears to be changing more 

drastically at the later times than the Nusselt number. 

In order to converge the solution to |e| < 5 x 10"^ at a given time, approximately 

20 iterations were needed. 
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Figure 5.24: The evolution of the local Nusselt number on an impulsively started 
right circular cylinder in crossflow 
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CHAPTER 6. CONCLUSIONS AND OBSERVATIONS 

The steady space-marching scheme of TenPas (1990) was extended for use on a 

C-grid and for unsteady flows. It was used to calculate flow and heat transfer over a 

flat plate and right circular cylinder in both steady and unsteady modes. New results 

were presented in the form of heat transfer for an impulsively started cylinder. 

In terms of computational efficiency and numerical accuracy, the space-marching 

scheme used in this study was found to perform well for steady flows. Judging from 

previous work (TenPas 1990), it is best suited to flows which have a relatively small 

amount of downstream influence. These would include flows with little stream wise 

pressure gradient, and only small recirculation regions. 

A measure of the efficiency of a solution procedure is the number of subiterations 

required to gain convergence at a given time step. Although more direct comparisons 

to other schemes should be made, on this basis, it is the opinion of the author that 

the present scheme does not handle unsteady flows efficiently. Large numbers of 

sub-iterations (20 to 50) were often required at each time step to resolve the flow 

at that instant. This compares to Chen and Pletcher (1990) who solved the flow 

over a full cylinder using a coupled modified strongly implicit procedure (CMSIP). 

They report needing only 2 sub-iterations at each time step for this complex flow. 

The same vortex shedding case was computed by Rogers and Kwak (1988) using a 
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pseudocompressibility method. They report needing 5 sub-iterations up until the 

flow became asymmetric and 12 - 15 following. Attempts to decrease the number of 

subiterations in the present work were largely unsuccessful. 

Another unsatisfactory characteristic of the present scheme deals with the dis­

cretization of the physical space. In the work detailed here, and in that of TenPas 

(1990), the scheme was found to be sensitive to grid spacing. At times a solution on 

a fine grid was difficult to obtain unless severe relaxation of the pressures, or, in the 

present work, a false time step was employed. 

The future of space-marching schemes is uncertain. For steady, internal flows, 

this method would be a viable option — and almost certainly superior to many others. 

For steady, external flows, this solution procedure should be given consideration — 

to what extent the flow is influenced by downstream conditions would be of primary 

concern. For unsteady cases, it is believed that other options should be seriously 

considered. 

Vortex Shedding 

A serious drawback of the present method was the inability to resolve the von 

Karman vortex street. The reasons for this remain under investigation. Much time 

and effort was put into this attempt and no tangible results can be shown. The 

following are a few observations dealing with this flow and the solution procedure 

used. 

As detailed before, the wake behind a right circular cylinder will become periodic 

in time (von Kârmân vortex street) for Reynolds numbers greater than about 40. 

Many researchers have successfully resolved this flow (Patel 1978, Rosenfeld, Kwak, 
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and Vinokur 1988, Visbal 1986, Karniadakis, Mikic, and Patera 1986). 

Calculation of this flow tends to be rather CPU time intensive. The solution 

usually evolves into a flow which resembles steady flow for that Reynolds number, 

then into the time periodic flow produced by the von Karman vortex street. 

Present work 

An attempt was made to advance to flows with vortex shedding. A symmetric 

boundary condition will not allow the resolution of this phenomenon. Although the 

reasons why are not clear, it has not been possible to calculate this flow with the 

present method. 

The procedure followed to solve this problem was to set up a full grid about the 

cylinder. The upstream, downstream and freestream boundaries were set the same 

as with the symmetric grid (see Figure 6.1). However, a discontinuity in the j indices 

occurred on the cut line. Moreover, two lines of constant tj coexisted on that line. 

Because of this, special consideration was required for the differencing and solution 

of the resulting linear algebra. 

Since it was desirable to march in the direction of the flow, the solution proceeded 

from upstream of the cylinder, beginning on the line of geometric symmetry, to the 

downstream boundary. It was deemed impractical to solve the regions directly above 

and below the body simultaneously. Therefore, each of these regions was always 

solved alone. 

The region behind the cylinder (downstream of the trailing edge), was handled 

in one of two ways (refer to Figure 6.2): 

1. This region was cut into upper and lower halves (regions 3a and 3b in the figure). 
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freestream 

inflow 
soUd 

body 
cut outflow 

freestream 

Figure 6.1: Full C-grid topology 

Each half was treated as a continuation of the region directly upstream of it 

(regions 1 and 2). This is identical to the method outlined previously for the 

symmetric case, except that the grid is now like two geometrically symmetric 

grids. 

2. This region was marched as a whole following the completion of the regions 

directly above and below the cylinder (regions 1 and 2). At each of these 

downstream stations (regions 3a and 3b), the resulting matrix was almost twice 

the size of the matrices solved in the other two regions. 

In both of these methods, the momentum and energy equations were solved as 

usual. The half-continuity control volumes located directly above and below the cut 

were added to the adjacent full-control volumes. The pressure on the cut was taken 
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2 3b 

cut 

1 

V 

3a 

Figure 6.2: Breakdown of regions in the flow 

as an average of the pressures immediately above and below. 

Pi->rl,jcut-\-l +Pz+ljc«i—1 
H+l.jcut - 2 

In the first of the methods above, information required from across the cut was 

lagged. In the second, it was implicit. It was felt that information could pass across 

the cut line more easily with the second of these procedures. 

Description of cases 

Flows of Reynolds numbers of 100 and 200 with a Mach number of 0.1 were 

attempted. Time steps from 0.005 to 0.02 were tried. The finest grid generated was 

219 X 64 with 82 points on the cylinder surface. It extended 15 diameters upstream 

and across the flow, and 20 diameters downstream. 
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Observations 

The solution evolved into a nearly symmetric steady-like flow with the recircu­

lation region behind the cylinder appearing much like steady flow. Following this 

time, the separated region evolved into an unsymmetric pattern, which seemed to 

cross the cut line in a smooth fashion. The lift and drag coefficients tended to be 

fairly constant once the flow became symmetric, and varied slowly in the early stages 

of the unsymmetric flow. As more time passed, the stream lines became unrealistic, 

showing that the flow upstream of the cylinder had large vertical components. At 

this point lift and drag began to oscillate sporadically. The average frequency of 

these oscillations was much larger than that of the correct vortex shedding. Some 

time after this point, the solution diverged and the scheme failed catastrophically. 
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APPENDIX A. METRICS 

The metrics which appear in the governing equations carry the geometric infor­

mation of the flow. The computational domain is kept simple (Figure 2.1) despite 

the complexity of the physical domain. 

Definitions 

The metrics which are used in the governing equations are defined as follows. 

Since the metrics are normalized by the Jacobian, J, in the code, they are shown in 

this form. 

T = "5? = 
Vx dy 

(A.2) 

(A.l) 

Where 

Pressure Poisson equation solver 

The following derivatives of the metrics appear only in the pressure backsweep 

formulation. 

^ = («»!/{, + vxv<n) - (A-4) 
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= - { V y ^ T j T }  +  ~  ^)^) (-^-5) 

= - { C x V ^ ^  +  V x y ^ j j )  —  { ( x V x { J  ^ ) ^ + V x i ' ^  ^ ) r j )  ( A . 6 )  

= ivy^^jj + ̂ 2/®^^) - iiyVyiJ + VyiJ (A.7) 

The Jacobian which shows up on the right-hand-sides of these equations is inverted 

before taking the required derivative. Or 

J~^ = J = x^yrj - xrjy^ (A.8) 

(a.9) 

(J ^)ri ~ {x^^yrj + x^yjjr]) — {xfjrjy^ + xrjy^y) (A.10) 

These equations involve a mixture of derivatives of ^ and t] and also x and y. The first 

derivatives of ^ and tj are have already been defined in terms of x and y. They are 

calculated and stored in the program. It is a simple matter to numerically calculate 

the second derivatives of x and y (see below). 

Contravarient Velocities 

The velocities, U and V,  are defined as the components normal to the lines of 

constant ^ and rj respectively. They are: 

U =  ̂ xu  +  îyv ,  V  =  r j xu  +  r j yv  

The grid is stationary in time, so this contributes nothing to these velocities. 
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Calculation of Metrics Using Finite Differences 

The metrics are calculated and stored as one of the first steps in the code. Since 

the momentum and energy equations are cast in the chain-rule-conservation-law form, 

there are no particular restrictions on the method of differencing the metrics. The 

continuity equation was formulated using finite control volumes, so the metrics were 

calculated directly from the areas of the faces of the control volumes. Therefore, 

second-order central differences were used for all interior points, as well as boundaries 

where geometric symmetry is known to exist. First-order one-sided differences were 

found adequate for non-symmetric boundaries. 

The particular finite differences used at an interior point, { i , j )  were 

J 2Ar] J 2Aj] 

V x  ^  y j + l j  ~ ~ 

J ~ 2A( J ~ 2A( 

At boundary points, the affected metrics appear as: 

& _ ^t,J + l ~ yi,j ^ _ ^ i j + l  ~ ^ i , j  
J ^ Arj J ~ AT? 

J At/ J At] 

(A.ll) 

(A.12) 

i h  j m a x )  

{ i m a x i j )  -

V x  y j + l j  y j j  V y  . .  ^i,3 

J ~ A( J ~ Ae 

v x y j j  y j - i j  V y .. ^ i , j  
J ~ A( J ~ A^ 

(A.13) 

(A.14) 

(A.15) 

(A.16) 
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Pressure Poisson equation solver 

Second derivatives of x and y appear only in the Poisson equation. Here too, 

central differences were used at all interior and symmetric-boundary points. These 

metrics are not needed at solid and free boundaries. 

In practice they are calculated as follows: 

. .  (^i-Hj+1 -  ̂ i-lj+l) -  (^i+l,j-l -  ̂ i-l,i-l) 
'f? 4A(?7 

i , j+ l  
~ (A.19) 

( % + l j + l  -  % - l j + l )  -  ( % + l j - l  -  % - l j - l )  

+ (A.22) 
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APPENDIX B. SIMPLE TRANSFORMATIONS FOR GRID 

GENERATION 

For the case of the semi-infinite flat plate, an H-grid was deemed most appro­

priate. For the best resolution, grids should be fine in regions where high gradients 

occur. For this reason, it was felt that a uniformly spaced grid would be inefficient 

since it would be as fine everywhere as the finest required. Therefore, grid packing 

schemes were employed in both the x and y directions. The transformations are 

found in Anderson et al. (1984) and are repeated here for completeness. 

Transformation 1 

A transformation which packs points close to a body surface — in this case the 

flat plate (see Figure B.l) — is as follows: 

Here, h is shown in Figure B.l, and (3 is the stretching (or packing) parameter such 

that 1 < /3 < oo. As /3 approaches 1, more points are clustered near y = 0. 

The metrics for this transformation are 

(B.l) 

(a; = 1, Vx = 0 (B.2) 
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y 

h -

Figure B.l: Grid clustering used for the flat plate case 

= 0) Vy = 
2/3 

The inverse of Equations B.l are found as 

z = (, y = h-
{ f 3  +  1 )  —  { 0  —  1) r/3+11 1 -7/ 

(B.3) 

(B.4) 

Transformation 2 

The second transformation used clusters points in the region of the leading edge 

Figure B.2). It is given by 

( = B 4- ̂  sinh —ljsinh(r5)j, rj = y (B.5) 
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(B.6) 

Where 
•  l  +  ( e ^ - l ) ^  •  

. l  +  ( e - ^ - l ) ^ .  

Here, L is shown in Figure B.2, and r is the stretching (or packing) parameter such 

that 0 < r < oo. As r approaches oo, more points are clustered near x = xc-

AWWWWWWWW Xc jr 

Figure B.2: Grid clustering of points near the leading edge of the flat plate 

For this transformation, the metric terms appear as 

sinh(Br) 
ix = , T/r = 0 

T X c \ j  1+ - l) sinh2(5T) 

fy = 0, = 1 

The inverse transformation of Equations B.5 are as follows 

\ sinh[T(^ -  B)]'  
X = Xc 

sinh(5r) 
y = T) 

(B.7) 

(B.8) 

(B.9) 
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APPENDIX C. LINEARIZATION OF THE FLUX AND TEMPORAL 

TERMS 

The solution procedure outlined in this work ultimately solves a set of linear 

equations at each marching station using Gauss elimination. The nonlinear flux and 

temporal terms must be linearized to conform to this method. Newton linearization 

was utilized to accomplish this. 

The linearized coefficient values were computed iteratively on at each station 

until sufficient convergence had been achieved. Usually, the rate of convergence was 

rapid, requiring only 1 or 2 iterations. 

The derivation of the linearized coefficients is as follows. The values of the 

primitive variables at the newest sub-iteration level (within a given time step) can be 

represented by their values at the previous sub-iteration plus an incremental change: 

u = Û + Au, v = v + Av, p = p + Ap, S — S + AS (C.l) 

Thus the nonlinear terms, /, can be represented by a truncated Taylor series expanded 

about the value at the known state point (the previous iteration level): 

f { u , v , p , S )  ̂  f { û , v , p , S )  +  A f  (C.2) 

where 

Af = fuAu + fvAv fpAp -f f g A S  (C.3) 
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and the changes in the primitive variables can be evaluated using Equation C.I. The 

partial derivatives (denoted above using subscripts) are evaluated at the known state. 

Equation C.2 is a linear function of the variables at the new time level. This is 

more easily seen by rewriting it as 

f { u ,  v ,p , S )  % fuu + /yf + fpP + fgS + C  (C.4) 

where 

C  =  f { û , v , p , S )  -  i f u û  +  f v v  +  f p p  + f s S )  (C.5) 

This procedure was followed to linearize all of the nonlinear terms found in the 

equations. Exceptions include: 

1. The temperature was lagged from the previous iteration level in the coefficients 

for the momentum and continuity equations 

2. The density was lagged in the temporal terms, cppuS and cppvS, in the energy 

equation 

3. The temperature was lagged in the temporal terms involving kinetic energy in 

the energy equation 

4. The dissipation terms in the energy equation were treated explicitly 

The following table lists the coefficients used in this study. 
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Table C.l: Coefficients resulting from the Newton linearization 

Flux (/) fu fv fp fs c 

pu p 0 û 
RT 

0 — p u  

pv 0 P 
V 

RT 
0 — p v  

pu^ 2,56 0 
û2 
RT 

0 -2pu^ 

puv pi) pu ûv 
RT 

0 —2pûv 

pv^ 0 2pv 
RT 

0 - 2 p v ^  

puT pf 0 0 pû(Tr - T^^rf) - p û f  +  p ù T g y ^ ^ f  

pvT 0 pf 0 - p v f  +  p v T g y ^ j , j :  

pifi S p i f i  0 
RT 

0 - Z p û ^  

pu^v pifi U^V 

RT 
0 —3pû^v 

puv^ pi}^ 2pûv Ûî)^ 
RT 

0 —ZpùiP' 

pv^ 0 Z p v ^  
Rf 

0 -3pv^ 
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APPENDIX D. DIFFUSION OF MOMENTUM TERMS 

This appendix deals with the diffusion terms, as found in the momentum equa­

tions. These terms contain viscosity-metric products within the derivatives. The 

product-rule is applied, which results is derivatives of metrics and second derivatives 

of velocities. 

The x-momentum equation viscous stress terms are: 

—  ^ x i T x x ) ^  —  î y i ' ' ' x y ) ^  —  V x i T x x ) r ]  —  V y { ' ' ' x y ) r ]  

Each of these terms, in the order shown above, is expanded as follows. 

(D.l) 

-^X{Txx)^ - n [ 2 { u ^ ( x  +  U r j T j x )  —  { v ^ ^ y  + V r j T j y ) ]  ^x 

4 ,  ,4 2 .  2 

ix 

— ^ y i ^ x y ) ^  = — l ^ [ { u ^ ( y  +  u r j r i y )  +  { v ^ ^ x  +  V f j T f x ) ]  ^y 

— v x { t x x ) ^  - ^ i [ 2 { u ^ ^ x  + U r ] V x )  —  { v ^ ^ y  + V r j T j y ) ]  tlx 



www.manaraa.com

146 

4 . 4 2 ^ 2 
+ - ^ f i V x U T j r j  -  ~  gMi/^7777 

4 4 2 2 
+ ^ i l ^ ^ x ) r ] U ^  + •^{Mx)r}UTi - •^ifi^y)T]V^ - Vx 

-Vy{ '^xy)r }  -  - + ^77%) + + ' ^ T j V x ) ]  Vy 

f^Vy''^'t]r] + + i^rjxVriT} 

+ + iMy)r]'"'i] + {f^^x)riv^ + { l ^ V x ) T ] V r j  

The corresponding terms from the y-momentum equation are: 

-  ̂x { T x y ) ^  -  ̂y i ' ^ ' y y ) ^  -  V x i T x y ) t ]  -  ' n y { ' ' ' y y ) r ]  

Again, expanding yields the following. 

Vy 

— i x { T x y ) ^  —  —  f ^ i i ' ^ ^ i y  + ' ^ r j V y )  + ' ^ r j V x ) ]  ^ x  
L J ^ 

= -

+ { f ' ' i y ) ^ u ^  +  ( M y )  ( ^ ' ^ 7 }  + + { t ^ V x ) ^ ^ T i  & 

^y{'^yy)(^ — ~ + Urji^x) + + v r j T j y ) ]  

2 . 2 ,4 . 4 
- 3/^^®"^7/ + 

2 2 4 4 

(D.: 

^2/ 

- V x { T x y ) r ]  —  + '"J?'/2/) + + ' ^ ^ T j T J x ) ]  Vy 

^^2/^^77 + fJ'TJx'Vrjtj 

+ + ( f i V x ) r ] y r ]  Vx 
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~' ' ly{^yy)r i  -  ~ + '"^r jVx)  -  {'v^^y +  ̂r ]Vy) ]  Vy 

2 . 2 4 . 4 
-  g M ^xîiT/T/ + + -^My^vV 

2 2 4 4 
Vy 

Despite the similarities between the diffusion terms in the momentum and energy 

equations, the product-rule for differentiation was not applied to the energy diffusion 

terms before differencing. The differencing of the momentum equations was carried 

out by TenPas (1990) while the differencing of the energy equation was done by the 

author. For the present work, it was felt that differencing the diffusion terms without 

the extra step of the product-rule was consistent with the differencing of the other 

terms. Since the viscous terms in the momentum equation were already differenced, 

and no apparent problems arose due to the form of this difference, they were not 

changed. The diffusion terms tend to be quite stable, and it is believed that accurate 

results are obtainable using either form. 
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